Shen Xueshun, Su Yong, Hu Jianglin, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. DOI: 10.11898/1001-7313.20170101.
Citation: Shen Xueshun, Su Yong, Hu Jianglin, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. DOI: 10.11898/1001-7313.20170101.

Development and Operation Transformation of GRAPES Global Middle-range Forecast System

  • The developing history of GRAPES global middle-range numerical weather prediction system (GRAPES_GFS) of China Meteorological Administration is reviewed. Important progresses in recent years are summarized and their contributions to GRAPES_GFS operation are introduced.From the aspect of dynamic frame aspect, an algorithm for vertical advection of temperature and the polar filter scheme are improved. New algorithms are introduced, including terrain filtering algorithm, scalar advection scheme with conservation and high accuracy, w-damping noise suppression algorithm, and Rayleigh friction in the stratosphere, etc. Besides, horizontal and vertical resolutions are enhanced. These improvements significantly improve the stability, accuracy and mass conservation of the dynamic core.From the aspect of physical process, the RRTMG radiation program is upgraded, the CoLM land surface process scheme is introduced, the cumulus convective scheme and boundary layer scheme are improved, and a two-parameter cloud physics scheme is developed. On these basis, the prediction cloud scheme is further developed, the interface between dynamic and physics is adjusted, the calculation of sea ice and surface albedo are also optimized. These improvements and optimizations improve the prediction ability of the physical package.From the aspect of global three-dimensional variational assimilation (3DVar), the model space 3DVar is developed to avoid the interpolation error of the analysis space to the model space, fine quality control and deviation correction techniques are developed to achieve high quality observation data assimilation, and more satellite data assimilation techniques are adopted especially using satellite hyperspectral infrared detector as the focus.At the same time, the prediction ability of GRAPES_GFS2.0 is being evaluated based on results of two-year assimilation forecast cycle test, and compared with T639. Generally speaking, the forecast indicators of the system are fully beyond the GRAPES_GFS 1.0 version. Model outputs of isobaric elements in the troposphere forecast, including precipitation and 2 m temperature, have obvious advantages comparing with T639.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return