Huang Liping, Chen Dehui, Deng Liantang, et al. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. DOI: 10.11898/1001-7313.20170103.
Citation: Huang Liping, Chen Dehui, Deng Liantang, et al. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. DOI: 10.11898/1001-7313.20170103.

Main Technical Improvements of GRAPES_Meso V4.0 and Verification

More Information
  • After operational implementation of GRAPES_Meso V3.0 in March 2013, some problems are found, which include over-prediction of precipitation, integration instability, large 2 m temperature forecast errors, insufficient observations assimilated, and coarser resolution. To deal with these problems, a lot of changes are made, mainly including introducing variational quality control scheme, applying the bias correction for sounding humidity observation, assimilating GPS/PW data, FY-2E cloud drift wind and radio occultation observation, increasing resolution of the model, using the fourth horizontal diffusion scheme, adjusting the coupling scheme between dynamic core and WSM6 microphysics parameterization, optimizing land surface model, and improving diagnostic algorithm of composite radar reflectivity. GRAPES_Meso is also upgraded from Version 3.0 to Version 4.0 by integrating all of the progresses mentioned above. One month hindcast experiments are implemented and results show that, compared with GRAPES_Meso V3.0, ETS scores of precipitation forecasts for GRAPES_Meso V4.0 are obviously higher for all five thresholds of 24 h accumulated precipitation, and the bias is largely decreased for light, moderate and heavy rainfall thresholds. The monthly mean precipitation pattern and intensity are both closer to observation, and the detail precipitation distribution can be reproduced better. Daily time evolutions of root mean square errors for 2 m temperature forecasts are very similar, while the amount of V4.0 is much less than that of V3.0. Monthly mean errors are reduced about 1-2℃ over most region of China and even 3-5℃ over some region for 24 h forecast. It is apparent that GRAPES_Meso V4.0 performs better for height, temperature and wind fields, as anomaly correlation coefficients of these fields at 500 hPa are larger and root mean square errors of these fields at 850 hPa are less than those by GRAPES_Meso V3.0. The forecast skill of GRAPES_Meso is largely improved from Version 3.0 to Version 4.0. Also, the unified process control has been implemented for GRAPES_Meso and GRAPES_RAFS (Rapid Analysis and Forecast System), which can reduce the system maintenance and management costs significantly. GRAPES_Meso V4.0 is transitioned into operational run at China National Meteorological Center with horizontal resolution of 0.1°×0.1° and vertical resolution of 50 levels from July 2014 and the whole system running is stable.
  • Fig  1.   Equitable threat score for 24 h accumulated precipitation forecast with and without GPS/PW data assimilated from 20 Jun to 20 Jul in 2013 (a)0-24 h, (b)24-48 h

    Fig  2.   Equitable threat score for 24 h accumulated precipitation forecast with and without FY-2E atmospheric wind vector data assimilated from 20 Jun to 20 Jul in 2013 (a)0-24 h, (b)24-48 h

    Fig  3.   Comparison of different GRAPES_Meso level schemes (a) all levels, (b) below 3000 m

    Fig  4.   Correlation coefficients of 24 h and 48 h forecast with and without the 4th horizontal diffusion in Jul 2013 (a)500 hPa height, (b)500 hPa temperature

    Fig  5.   Time evolution of total water vapor (a) and cloud water (b) by GRAPES_Meso V3.0 on 15 Jul 2008

    Fig  6.   Observed and simulated 24-hour accumulated precipitation from 0000 UTC 16 Jul to 0000 UTC 17 Jul in 2008 (a) observation, (b)18-42 h forecast by GRAPES_Meso V3.0, (c)18-42 h forecast after adjusting moisture flux scheme and couple between WSM6 and dynamical core

    Fig  7.   The root mean square error for 2 m temperature of 12 h and 36 h forecast before and after the improvement of GRAPES_Meso surface energy balance equation

    Fig  8.   Scores for 24 h accumulated precipitation by GRAPES_Meso V3.0 and V4.0 from 20 Jun to 20 Jul in 2013 (a) ETS of 0-24 h forecast, (b) ETS of 24-48 h forecast, (c) Bias of 0-24 h forecast, (d) Bias of 24-48 h forecast

    Fig  9.   Monthly mean 24 h accumulated precipitation distribution from 20 Jun to 20 Jul in 2013 (a) observation, (b)24 h forecast of V4.0, (c)24 h forecast of V3.0, (d)48 h forecast of V4.0, (e)48 h forecast of V3.0

    Fig  10.   Monthly mean error of 2 m temperature of GRAPES_Meso 24 h forecast from 20 Jun to 20 Jul in 2013 (a) V3.0, (b) V4.0

    Fig  11.   The anomaly correlation coefficient and root mean square error (RMSE) of GRAPES_Meso 24 h and 48 h forecast from 20 Jun to 20 Jul 2013 (a) correlation coefficient of 500 hPa height, (b) RMSE of 850 hPa height, (c) correlation coefficient of 500 hPa temperature, (d) RMSE of 850 hPa temperature, (e) correlation coefficient of 500 hPa zonal wind, (f) RMSE of 850 hPa zonal wind

    Table  1   Differences between GRAPES_Meso V3.0 and V4.0

    项目 GRAPES_Meso V3.0 GRAPES_Meso V4.0
    观测资料 AOB AOB,GPS/PW,FY-2E
    水平分辨率 0.15° 0.1°
    垂直层次数 L33 L50
    分析系统 无变分质量控制 增加变分质量控制
    无探空湿度偏差订正 增加探空湿度偏差订正
    微物理参数化 WSM6 改进耦合方案的WSM6
    陆面参数化 NOAH 改进地表辐射平衡的NOAH
    辐射参数化 RRTM RRTM (新)
    积云参数化 BMJ KF
    DownLoad: CSV
  • 陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    Xue J S, Zhuang S Y, Zhu G F, et al.Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES.Chin Sci Bull, 2008, 53(22):3446-3457. http://www.oalib.com/paper/1304990
    Chen D H, Xue J S, Yang X S, et al.New generation of multi-scale NWP system (GRAPES):General scientific design.Chin Sci Bull, 2008, 53(22):3433-3445. http://www.cnki.com.cn/Article/CJFDTOTAL-JXTW200822003.htm
    Xu G Q, Chen D H, Xue J S, et al.The program structure designing and optimizing tests of GRAPES physics.Chin Sci Bull, 2008, 53(22):3470-3476. https://www.researchgate.net/profile/Xueshun_Shen2/publication/225550173_The_program_structure_designing_and_optimizing_tests_of_GRAPES_physics/links/556edfe208aefcb861dbb247.pdf
    叶成志, 欧阳里程, 李象玉, 等.GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析.热带气象学报, 2006, 26(4):393-399. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200604011.htm
    徐双柱, 张兵, 谌伟.GRAPES模式对长江流域天气预报的检验分析.气象, 2006, 33(11):393-399. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811010009.htm
    Zhang R H, Shen X S.On the development of the GRAPES-A new generation of the national operational NWP system in China.Chin Sci Bull, 2008, 53(22):3429-3432. https://www.researchgate.net/publication/225916647_On_the_development_of_the_GRAPES-A_new_generation_of_the_national_operational_NWP_system_in_China
    王光辉, 陈峰峰, 沈学顺, 等.数值模式中地形滤波处理及水平扩散对降雨预报的影响.地球物理学报, 2008, 51(6):1642-1650. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200806004.htm
    马旭林, 庄照荣, 薛纪善, 等.GRAPES非静力数值预报模式的三维变分资料同化系统的发展.气象学报, 2009, 67(1):50-60. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901007.htm
    沈学顺, 王明欢, 肖锋.GRAPES模式中高精度正定保形物质平流方案的研究Ⅰ:理论方案设计与理想试验.气象学报, 2011, 69(1):1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101001.htm
    沈元芳, 胡江林.GRAPES模式中的坡地辐射方案及其对短期天气过程模拟的影响.大气科学, 2006, 30(6):1129-1137. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606006.htm
    王雨, 李莉.GRAPES_Meso V3.0模式预报效果检验.应用气象学报, 2010, 21(5):393-399. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100502&flag=1
    熊秋芬.GRAPES_Meso模式的降水格点检验和站点检验分析.气象, 2011, 37(2):185-193. http://www.cnki.com.cn/Article/CJFDTotal-QXXX201102009.htm
    陈超君, 王东海, 李国平, 等.冬季高海拔复杂地形下GRAPES-Meso要素预报的检验评估.气象, 2012, 38(6):657-668. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201310002165.htm
    庄照荣, 薛纪善.云迹风资料的三维变分同化及对台风预报的影响试验.热带气象学报, 2004, 20(3):225-236. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200403000.htm
    薛湛彬, 龚建东, 何财福, 等.静止卫星云导风的质量控制及在同化中的应用.应用气象学报, 2013, 24(3):356-364. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130312&flag=1
    薛湛彬, 龚建东, 薛纪善, 等.FY-2E卫星云导风定高误差及在同化中的应用.应用气象学报, 2011, 22(6):681-690. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110605&flag=1
    王金成, 龚建东, 邓莲堂.GNSS反演资料在GRAPES_Meso三维变分中的应用.应用气象学报, 2014, 25(6):654-668. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140602&flag=1
    郝民, 张华, 陶士伟, 等.变分质量控制在区域GRAPES-3DVAR中的应用研究.高原气象, 2013, 32(1):122-132. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201301014.htm
    郝民, 龚建东, 王瑞文, 等.中国L波段探空湿度观测的质量评估及偏差订正.气象学报, 2015, 73(1):187-199. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201501014.htm
    盛春岩, 薛德强, 雷霆, 等.雷达资料同化与提高模式水平分辨率对短时预报影响的数值对比试验.气象学报, 2006, 64(3):293-308. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200603003.htm
    Bernadet L R, Grasso L D, Nachamkin J E, et al.Simulating convective events using a high-resolution mesoscale model.J Geophys Res, 2000, 105:14963-14982. DOI: 10.1029/2000JD900100
    Lauritzen P H, Mirin A A, Truesdale J, et al.Implementation of new diffusion/filtering operators in the CAM-FV dynamical core.Int J High Perform Comput Appl, 2012, 26(1):63-73. DOI: 10.1177/1094342011410088
    Chen F, Dudhia J.Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system.Part Ⅰ:Model description and implementation.Mon Wea Rev, 2001, 129:569-585.
    苏勇, 沈学顺, 张倩, 等.应用样条插值提高GRAPES模式物理过程反馈精度.应用气象学报, 2014, 25(2):202-211. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140210&flag=1
    盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2003.
  • Related Articles

    [1]Liu Bo, Ma Libin, Rong Xinyao, Su Jingzhi, Yan Yuhan, Hua Lijuan, Tang Yanli. High-resolution Model for Seasonal Prediction of Surface Shortwave Radiation in China[J]. Journal of Applied Meteorological Science, 2022, 33(3): 341-352. DOI: 10.11898/1001-7313.20220308
    [2]Guo Qiyun, Yang Rongkang, Cheng Kaiqi, Li Changxing. Refractive Index Quality Control and Comparative Analysis of Multi-source Occultation Based on Sounding Observation[J]. Journal of Applied Meteorological Science, 2020, 31(1): 13-26. DOI: 10.11898/1001-7313.20200102
    [3]Tang Wenyuan, Zheng Yongguang, Zhang Xiaowen. FSS-based Evaluation on Convective Weather Forecasts in North China from High Resolution Models[J]. Journal of Applied Meteorological Science, 2018, 29(5): 513-523. DOI: 10.11898/1001-7313.20180501
    [4]Chen Boyang, Gu Songyan, Chen Fansheng. Super Resolution Image Reconstruction for FY-3 MWRI 10.6 GHz Band[J]. Journal of Applied Meteorological Science, 2016, 27(1): 123-128. DOI: 10.11898/1001-7313.20160113
    [5]Liu Jian, Zhang Liyang. Calculation and Validation Method of Cloud Amount by High Spatial Resolution Satellite Data[J]. Journal of Applied Meteorological Science, 2011, 22(1): 35-45.
    [6]Miao Shiguang, Sun Guiping, Ma Yan, Xu Xiaoliang, Wang Xiaoyun, Lin Hang, Jiang Weimei, Liu Hongnian, Zhang Ning, Sun Lin, Wang Yaoting. The Development of High Resolution Numerical Model System for Qingdao Olympic Sailing Competition[J]. Journal of Applied Meteorological Science, 2009, 20(3): 370-379.
    [7]Zhang Tao, Guo Yufu, Wu Guoxiong. A COUPLED OCEAN-ATMOSPHERE MODEL WITH A HIGHER RESOLUTION OCEANIC COMPONENT[J]. Journal of Applied Meteorological Science, 2002, 13(6): 688-695.
    [8]Min Jinzhong, Sheng Tongli, Zhen Haishan, Shu Linping. NUMERICAL EXPERIMENT ON QUALITY CONTROL AND VARIATIONAL ASSIMILATION OF SATELLITE IMAGE RETRIEVAL[J]. Journal of Applied Meteorological Science, 2000, 11(4): 410-418.
    [9]Liu Huanzhu, Chen Dehui, Teng Qiaobin. Researches on the Influence of Parameterization of Physical Process on Modeling Typhoon and Its Dynamical Structure[J]. Journal of Applied Meteorological Science, 1998, 9(2): 141-150.
    [10]Cheng Linsheng, Ma Yan. The Developing Structure of a Black Storm and Its Numerical Experiment of Different Model Resolution[J]. Journal of Applied Meteorological Science, 1996, 7(4): 385-395.
  • Cited by

    Periodical cited type(86)

    1. 邓莲堂,朱立娟,张进,于翡. CMA-MESO 3 km模式中自适应时间步长方案试验. 气象科技. 2025(01): 10-21 .
    2. Hao WANG,Wei HAN,Jun LI,Hao CHEN,Ruoying YIN. Impact of Assimilation of FY-4A GIIRS Three-Dimensional Horizontal Wind Observations on Typhoon Forecasts. Advances in Atmospheric Sciences. 2025(03): 467-485 .
    3. 马怡轩,徐国强. 不同分辨率和云微物理方案对四川盆地一次暴雨过程模拟的影响分析. 大气科学. 2025(01): 185-196 .
    4. 陆天舒,孙鑫,陈昊明,李普曦,朱峰,霍庆,周佰铨,杨琳韵. 区域高分辨率数值预报检验评估系统. 气象科技进展. 2024(01): 32-37 .
    5. 希爽,于天雷,任素玲,张里阳,唐世浩. 多源极轨卫星微波温度计资料实时区域同化系统. 电子技术应用. 2024(03): 86-91 .
    6. 曲巧娜,吴炜. 多种模式降水预报的稳定性特征研究. 气象. 2024(04): 420-433 .
    7. 庄照荣,李兴良,王瑞春,高郁东. 地形影响的水平相关模型在CMA-MESO中的应用. 应用气象学报. 2024(04): 414-428 . 本站查看
    8. 田伟红,庄照荣,韩威,沈学顺. 葵花-8卫星AOD资料在CMA-MESO/CUACE CW 3DVar同化系统中的个例应用研究. 高原气象. 2024(05): 1259-1270 .
    9. 钟有亮,李勋,陈静,刘凑华. ECMWF细网格10 m极大风速预报在海南岛的评估与订正. 热带农业科学. 2024(10): 140-147 .
    10. 祝传栋,李矜霄,李马军,何飞,成驰,陈宇,陈城,廖洁. Performance of Kilometer-Scale CARAS Precipitation Product Against Ground-based Observations During 2008–2021 over Hubei, China. Journal of Tropical Meteorology. 2024(04): 405-415 .
    11. 潘巧英,李婷苑,陈靖扬,李伟炽,陈辰. 基于GRAPES模式佛山市臭氧污染气象指数的构建和预报. 环境科学学报. 2023(01): 140-151 .
    12. 张舒婷,仲跻芹,卢冰,黄向宇,陈敏,张鑫宇,全继萍. CMA-BJ V2.0系统华北地区降水预报性能评估. 应用气象学报. 2023(02): 129-141 . 本站查看
    13. 潘留杰,张宏芳,刘静,刘嘉慧敏,梁绵,祁春娟,戴昌明,李培荣. 智能网格SCMOC及多模式降水预报对比. 大气科学学报. 2023(02): 217-229 .
    14. Zhifang XU,Lin ZHANG,Ruichun WANG,Jiandong GONG. Effect of 2-m Temperature Data Assimilation in the CMA-MESO 3DVAR System. Journal of Meteorological Research. 2023(02): 218-233 .
    15. 蔡怡,徐枝芳,朱克云,李泽椿. CMA-MESO 3 km系统2m温度预报诊断. 气象. 2023(04): 400-414 .
    16. 雍斌,张建云,王国庆. 黄河源区水文预报的关键科学问题. 水科学进展. 2023(02): 159-171 .
    17. 蔡怡,徐枝芳,龚玺,钟若嵋,黄观胜,龙海川. 2021年夏季CMA-MESO模式降水预报评估. 干旱气象. 2023(03): 503-515 .
    18. Xueshun SHEN,Yong SU,Hongliang ZHANG,Jianglin HU. New Version of the CMA-GFS Dynamical Core Based on the Predictor–Corrector Time Integration Scheme. Journal of Meteorological Research. 2023(03): 273-285 .
    19. 朱晓彤,姚凯,李尚锋,曲美慧. SAL方法在东北地区台风降水预报检验中的应用. 气象与环境学报. 2023(03): 31-39 .
    20. 庄照荣,江源,田伟红,黄丽萍,李兴良,邓莲堂. CMA-MESO逐时快速更新同化预报系统及其短临预报效果初步分析. 大气科学. 2023(04): 925-942 .
    21. 胡嘉缨,董春卿,操俊伟. 山西复杂地形下CMA-MESO 3 km系统降水预报检验及订正. 暴雨灾害. 2023(04): 384-394 .
    22. 张进,孙健,沈学顺,苏勇,马占山,井浩,刘奇俊,张红亮,蒋沁谷,陈峰峰,李喆,金之雁,伍湘君,梁妙玲,刘琨. CMA-GFS V4.0模式关键技术研发和业务化. 应用气象学报. 2023(05): 513-526 . 本站查看
    23. 毛旭,刘鑫华,杨波. 一种优化的基于对流可分辨模式的飞机积冰潜势概率预报方法. 大气科学. 2023(05): 1525-1540 .
    24. 王蕾,陈起英,胡江林,徐国强. 基于CMA-MESO冰粒子含量的雨雪相态判据应用. 应用气象学报. 2023(06): 655-667 . 本站查看
    25. 陈敏 ,仲跻芹 ,卢冰 ,童文雪 ,冯琎 ,张舒婷 ,黄向宇 ,范水勇 . CMA-BJ 2.0版逐时快速更新追赶循环同化预报系统研发及应用Ⅰ:资料同化及系统构建. 气象学报. 2023(06): 911-925 .
    26. 薛建军,肖子牛. Evaluation of Performance of Polar WRF Model in Simulating Precipitation over Qinghai-Tibet Plateau. Journal of Tropical Meteorology. 2023(04): 410-430 .
    27. 秦昆,周扬,黄静,刘娟,喻雪松,高牧寒,刘东海,高谢庆. 地球系统模式理论与技术研究综述. 华南地理学报. 2023(01): 36-50 .
    28. 杨斌,王敬宇,刘卫国,蔡蕙伊,于翡,邓莲堂,黄丽萍. GRAPES区域模式的输入输出分析和优化. 电子技术应用. 2022(01): 39-45+52 .
    29. 钟敏,肖安,许冠宇. 基于CMA-MESO的分级短时强降水概率预报方法研究. 干旱气象. 2022(04): 700-709 .
    30. 王慧,林建,马占山,刘达,吴晓京. 2018年2月琼州海峡持续性海雾过程的数值模拟分析. 大气科学. 2022(05): 1267-1280 .
    31. 姚帅,刘柏鑫,慕秀香,范倩莹. 基于CMA-Meso的吉林省2m温度预报检验及订正. 气象灾害防御. 2022(03): 34-38 .
    32. 黄丽萍,邓莲堂,王瑞春,庄照荣,江源,徐枝芳,朱立娟,张进,王莉莉,于翡,孙琴,王丹,王皓,周非非,徐国强. CMA-MESO关键技术集成及应用. 应用气象学报. 2022(06): 641-654 . 本站查看
    33. 陈龙,陈静静,兰明才,周长青,付炜. 华南区域模式在湖南省的2 m温度预报检验与订正研究. 中低纬山地气象. 2022(05): 64-70 .
    34. 佟华,张玉涛,齐倩倩,王远哲,王大鹏. 基于CMA模式体系的京津冀地区复杂地形下冬季的精细化地面要素多模式集成预报研究. 气象. 2022(12): 1539-1549 .
    35. Na LI,Lingkun RAN,Dongdong SHEN,Baofeng JIAO. An Experiment on the Prediction of the Surface Wind Speed in Chongli Based on the WRF Model: Evaluation and Calibration. Advances in Atmospheric Sciences. 2021(05): 845-861 .
    36. 任绪伟,陈晓燕,蔡迪花,李兰倩,邵爱梅. GRAPES_Meso模式及其云分析系统在中国西北地区降水预报中的应用评估. 干旱气象. 2021(02): 333-344 .
    37. 张武龙,康岚,周威,银航. 基于GRAPES-MESO模式的极端短时强降水预报. 干旱气象. 2021(03): 507-513 .
    38. 谌芸,曹勇,孙健,符娇兰,董全,于超,刘凑华,唐健,郭云谦. 中央气象台精细化网格降水预报技术的发展和思考. 气象. 2021(06): 655-670 .
    39. 陈昊明,李普曦,赵妍. 千米尺度模式降水的检验评估进展及展望. 气象科技进展. 2021(03): 155-164 .
    40. 王丹,戴昌明,娄盼星,王建鹏. 陕西ECMWF、GRAPES_Meso和SCMOC气温预报的对比检验及订正. 干旱气象. 2021(04): 697-708 .
    41. 王瑞春,龚建东,王皓. 公里尺度区域变分同化中引入大尺度约束的影响研究. 大气科学. 2021(05): 1007-1022 .
    42. 马占山,刘奇俊,孙健,孔期,李喆,沈学顺,赵传峰,代刊,陶法. WSM6云微物理方案对华北地区一次降雪预报偏强的原因分析. 气象. 2021(09): 1029-1046 .
    43. 甘玉婷,陈昊明,李建. 千米尺度数值预报模式对泰山地区暖季降水预报性能的评估. 气象学报. 2021(05): 750-768 .
    44. 周聂,侯精明,苏锋,毕旭,陈光照,张大伟,李丙尧. 基于陆气耦合的城市内涝高分辨率模拟预报方法. 中国给水排水. 2021(21): 131-138 .
    45. 徐枝芳,吴洋,龚建东,蔡怡. CMA-MESO三维变分同化系统2m相对湿度资料同化研究. 气象学报. 2021(06): 943-955 .
    46. 刘维成,张强,刘新伟. 陆-气相互作用对大气对流活动影响研究进展和展望. 高原气象. 2021(06): 1278-1293 .
    47. 於敏佳,刘菡,李晓丽. 舟山风力智能网格精细化订正释用技术. 海洋预报. 2021(06): 48-55 .
    48. Yu WANG,Kan DAI,Zhiping ZONG,Yue SHEN,Ruixia ZHAO,Jian TANG,Couhua LIU. Quantitative Precipitation Forecasting Using Multi-Model Blending with Supplemental Grid Points: Experiments and Prospects in China. Journal of Meteorological Research. 2021(03): 521-536 .
    49. 张玉涛,佟华,孙健. 一种偏差订正方法在平昌冬奥会气象预报的应用. 应用气象学报. 2020(01): 27-41 . 本站查看
    50. 庄照荣,王瑞春,李兴良. 全球大尺度信息在3km GRAPES-RAFS系统中的应用. 气象学报. 2020(01): 33-47 .
    51. 吴晶,李照荣,颜鹏程,杨艳芬,白磊,杨建才,彭筱. 西北四省(区)GRAPES模式降水预报的定量评估. 气象. 2020(03): 346-356 .
    52. 张小雯,唐文苑,郑永光,盛杰,朱文剑. GRAPES_3 km数值模式对流风暴预报能力的多方法综合评估. 气象. 2020(03): 367-380 .
    53. 陈长胜,张靖,马洪波,全思航. GRAPES-Meso对一次东北地区大到暴雪天气的预报偏差分析. 气象灾害防御. 2020(02): 1-4 .
    54. 周宜卿,冷谦. GRAPES_MESO模式对郴州一次强降水过程的预报检验. 农业与技术. 2020(13): 119-129 .
    55. Xueshun SHEN,Jianjie WANG,Zechun LI,Dehui CHEN,Jiandong GONG. Research and Operational Development of Numerical Weather Prediction in China. Journal of Meteorological Research. 2020(04): 675-698 .
    56. Xiaoling ZHANG,Jianhua SUN,Yongguang ZHENG,Yuanchun ZHANG,Ruoyun MA,Xinlin YANG,Kanghui ZHOU,Xuqing HAN. Progress in Severe Convective Weather Forecasting in China since the 1950s. Journal of Meteorological Research. 2020(04): 699-719 .
    57. 希爽,张里阳,王旻燕,余帅,王宁. 极轨卫星直收资料在区域数值预报中应用初探. 气象研究与应用. 2020(03): 65-71 .
    58. 沈学顺,王建捷,李泽椿,陈德辉,龚建东. 中国数值天气预报的自主创新发展. 气象学报. 2020(03): 451-476 .
    59. 王毅,周庆亮,佟华,咸迪,许万智,任璐,唐文苑. 灾害性天气预报示范计划技术进展. 科技导报. 2020(20): 86-96 .
    60. 袁晨,谢清霞,刘彦华,李力,顾天红. GRAPES_MESO区域中尺度模式对贵州温度与降水预报的检验评估. 中低纬山地气象. 2020(06): 56-59 .
    61. 梁宏,曹云昌,梁静舒,万晓敏,赵盼盼,涂满红,王海深,胡姮. 地基GNSS遥感探测气象应用. 中国地震. 2020(04): 744-755 .
    62. 郭云云,邓莲堂,冯丽莎,宋攀. GRAPES中尺度模式中Kain-Fritcsh方案的改进及应用试验. 高原山地气象研究. 2020(04): 10-15+69 .
    63. 曾晓青,薛峰,姚莉,赵声蓉. 针对模式风场的格点预报订正方案对比. 应用气象学报. 2019(01): 49-60 . 本站查看
    64. 张博,赵滨. 一种集成风向风速的风场空间检验方法. 应用气象学报. 2019(02): 154-163 . 本站查看
    65. 陈悦丽,赵琳娜,王英,王成鑫. 降雨型地质灾害预报方法研究进展. 应用气象学报. 2019(02): 142-153 . 本站查看
    66. 肖玉华,王佳津,蒋丽娟,师锐,陈莹. GRAPES_GFS在西南地区的预报稳定性及其误差与地形的关系. 暴雨灾害. 2019(01): 59-65 .
    67. 唐文苑,郑永光. 基于快速更新同化数值预报的小时降水量时间滞后集合订正技术. 气象. 2019(03): 305-317 .
    68. 庄照荣,王瑞春,王金成,龚建东. GRAPES_Meso背景误差特征及应用. 应用气象学报. 2019(03): 316-331 . 本站查看
    69. 金荣花,代刊,赵瑞霞,曹勇,薛峰,刘凑华,赵声蓉,李勇,韦青. 我国无缝隙精细化网格天气预报技术进展与挑战. 气象. 2019(04): 445-457 .
    70. 杨枚锦,龚建东,王瑞春,庄照荣,徐枝芳. A COMPARISON OF THE BLENDING AND CONSTRAINING METHODS TO INTRODUCE LARGE-SCALE INFORMATION INTO GRAPES MESOSCALE ANALYSIS. Journal of Tropical Meteorology. 2019(02): 227-244 .
    71. 曹越,赵琳娜,巩远发,许东蓓,高迎娟. ECMWF高分辨率模式降水预报能力评估与误差分析. 暴雨灾害. 2019(03): 249-258 .
    72. 陈良吕,陈静,霍振华,夏宇,陈法敬. 两种确定性初值形成方案对集合预报技巧的影响研究. 气象. 2019(06): 745-755 .
    73. 魏敏,王彬,何香,孙俊,姜小成,肖洒,张莉,徐金秀. BCCAGCM模式在神威·太湖之光系统的优化. 应用气象学报. 2019(04): 502-512 . 本站查看
    74. 程锐,徐幼平,崔春光,黄静,刘娟,金宝刚,顾春利,孙溦. 暴雨中尺度模式的发展历程和研究进展. 暴雨灾害. 2019(05): 472-482 .
    75. 徐国强,赵晨阳. 2017年5月7日广州特大暴雨模拟中的背景场影响分析. 气象. 2019(12): 1642-1650 .
    76. 刘静,才奎志,谭政华. 高分辨率模式雷达回波预报能力分析. 气象. 2019(12): 1710-1717 .
    77. 于翡,黄丽萍,邓莲堂. GRAPES-MESO模式不同空间分辨率对中国夏季降水预报的影响分析. 大气科学. 2018(05): 1146-1156 .
    78. 张小玲,杨波,盛杰,田付友,周康辉,林隐静,朱文剑,曹艳察. 中国强对流天气预报业务发展. 气象科技进展. 2018(03): 8-18 .
    79. 吴亚丽,蒙伟光,陈德辉,林文实,朱立娟. 一次华南暖区暴雨过程可预报性的初值影响研究. 气象学报. 2018(03): 323-342 .
    80. 孙文奇,李昌义. 数值模式中的大气边界层参数化方案综述. 海洋气象学报. 2018(03): 11-19 .
    81. 唐文苑,郑永光,张小雯. 基于FSS的高分辨率模式华北对流预报能力评估. 应用气象学报. 2018(05): 513-523 . 本站查看
    82. 黄海亮,靳双龙,王式功,陈录元,董春卿. 相似预报方法在山西省云量预报中的应用. 干旱气象. 2018(05): 845-851 .
    83. 许晨璐,王建捷,黄丽萍. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估. 气象学报. 2017(06): 851-876 .
    84. 张晓虎,张其松,许健民. 半透明云风矢量高度算法中代表运动像元的使用. 应用气象学报. 2017(03): 270-282 . 本站查看
    85. 张林,刘永柱. GRAPES全球四维变分同化系统极小化算法预调节. 应用气象学报. 2017(02): 168-176 . 本站查看
    86. 张晓虎,张其松,许健民. 半透明云风矢量高度算法中云下背景辐射的估计. 应用气象学报. 2017(03): 283-291 . 本站查看

    Other cited types(23)

Catalog

    Figures(11)  /  Tables(1)

    Article views11646 PDF downloads1763 Cited by: 109
    • Received : 2016-03-21
    • Accepted : 2016-10-11
    • Published : 2017-01-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return