Duan Yapeng, Wang Donghai, Liu Ying. Radar analysis and numerical simulation of strong convective weather for 'Oriental Star' depression. J Appl Meteor Sci, 2017, 28(6): 666-677. DOI:  10.11898/1001-7313.20170603.
Citation: Duan Yapeng, Wang Donghai, Liu Ying. Radar analysis and numerical simulation of strong convective weather for "Oriental Star" depression. J Appl Meteor Sci, 2017, 28(6): 666-677. DOI:  10.11898/1001-7313.20170603.

Radar Analysis and Numerical Simulation of Strong Convective Weather for "Oriental Star" Depression

DOI: 10.11898/1001-7313.20170603
  • Received Date: 2017-03-10
  • Rev Recd Date: 2017-07-14
  • Publish Date: 2017-11-30
  • At about 2132 BT 1 June 2015, "Oriental Star" cruise from Nanjing for Chongqing suffers severe stormy weather when sailing in the Yangtze River near Jianli County, resulting in 442 people killed. The investigation team finds that the occurrence of the catastrophic accident is caused by a sudden downburst of squall line weather. Using ARPS (the Advanced Regional Prediction System) model and assimilation of conventional data and four-radar data in the surrounding area, the severe weather process is simulated. Combined with the high-resolution radar observation, the structure and strength of the squall line are analyzed synthetically.The atmosphere of dry ambient at low level and humid ambient at middle level is favorable for the occurrence of convective weather phenomena. Radar observations show that the squall line convective system is northeast-southwest direction, and moves fast to southeast, the life duration is about 6 hours, and the squall line transit lasts about an hour. During the evolution of the squall line, convections developed to their strongest at the intensifying stage, when the strong convection region reached its maximum. At its mature stage, gust front appears in front of ground thunderstorms, and the horizontal scale of the squall line system reaches the upper limit. The instability of the stratification and the flat terrain of the Jianghan Plain are important causes for the strong convective activity and the downburst phenomenon.The numerical simulation shows that the high-speed wind area above the ground, the position of instantaneous maximum speed of horizontal and vertical wind, cumulative rainfall maximum center, the composite reflectivity high value area of 200 m resolution show a zonal distribution to uniform, which coordinates with the time and spatial distribution of the accident. Influenced by the direct impact of the down burst, intensity of thunderstorm near the accident point increases rapidly, and a narrow gust wind appears near the ground where wind shear increased significantly. Ship wreck is affected by above 10 m·s-1 downdraft and above 18 m·s-1 strong westerly wind from 2132 BT to 2134 BT. The precipitation intensity begins to increase at 2131 BT, and the center of heavy precipitation is located just above the accident spot from 2131 BT to 2135 BT, with a maximum precipitation of more than 10 mm per minute. A gust wind makes great contribution to the transportation of momentum from the middle and low levels to the land surface, accompanied by raindrops of drag and the sinking air flow, enhancing the speed of the wind further.
  • Fig. 1  Synoptic chart of 500 hPa(a) and 850 hPa(b) at 2000 BT 1 Jun 2015

    (the solid line denotes the geopotential height, unit:gpm; the dashed line denotes the temperature, unit:℃; the wind rod denotes the horizontal wind)

    Fig. 2  Observation of Yueyang Doppler weather radar at 1918 BT 1 Jun 2015

    (a)horizontal composite reflectivity, (b)cross section of radar reflectivity along the dashed line in Fig. 2a

    Fig. 3  Observation of Yueyang Doppler weather radar at 2130 BT 1 Jun 2015

    (a)horizontal composite reflectivity, (b)cross section of radar reflectivity along the dashed line in Fig. 3a

    Fig. 4  Domains used in the ARPS model

    Fig. 5  Simulated composite reflectivity and wind barbs with the resolution of 4 km from 2110 to 2130 BT on 1 Jun 2015

    Fig. 6  The simulated composite reflectivity(the shaded) and wind field(the barb) near shipwreck waters at Jianli County with the resolution of 200 meters from 2120 BT to 2136 BT on 1 Jun 2015

    Fig. 7  Simulated accumulated precipitation with the resolution of 200 meters from 2100 BT to 2200 BT on 1 Jun 2015

    Fig. 8  The vertical section of total wind speed(the shaded), simulated zonal and vertical synthesis velocity(the vector) with vertical velocity(the isoline, unit: m·s-1) along the shipwreck spot from 2132 BT to 2133 BT on 1 Jun 2015

    Fig. 9  The low-level convection structure of the squall line in maturation stage

  • [1]
    孟智勇, 姚聃, 白兰强, 等.基于实地灾害调研和雷达观测对"东方之星"倾覆地点附近强风的估计.科学通报, 2016, 61(7):797-798. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201607018&dbname=CJFD&dbcode=CJFQ
    [2]
    张培昌, 杜秉玉, 戴铁丕, 等.雷达气象学(第2版).北京:气象出版社, 2001.
    [3]
    Meng Z, Yan D, Zhang Y.General features of squall lines in east China.Mon Wea Rev, 2013, 141(5):1629-1647. doi:  10.1175/MWR-D-12-00208.1
    [4]
    姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-753. doi:  10.11898/1001-7313.20050615
    [5]
    吴海英, 裴海瑛, 沈树勤, 等.飑线传播与发展及其引发地面强风过程个例分析.气象科技, 2007, 35(5):676-680. http://d.wanfangdata.com.cn/Periodical/qxkj200705013
    [6]
    谢健标, 林良勋, 颜文胜, 等.广东2005年"3·22"强飑线天气过程分析.应用气象学报, 2007, 18(2):321-329. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070354&flag=1
    [7]
    王秀明, 俞小鼎, 朱禾.NCEP再分析资料在强对流环境分析中的应用.应用气象学报, 2012, 23(2):139-146. doi:  10.11898/1001-7313.20120202
    [8]
    Fujita T T.Results of detailed synoptic studies of squall lines.Tellus, 1955, 7(4):405-436. doi:  10.3402/tellusa.v7i4.8920
    [9]
    Fujita T T.Analytical mesometeorology:A review.Meteor Monogr, 1963, 5(27):77-125. http://d.wanfangdata.com.cn/Periodical/gpxygpfx201509014
    [10]
    Houze R A, Biggerstaff M I, Rutledge S A, et al.Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems.Bull Amer Meteor Soc, 1989, 70(6):608-619. doi:  10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2
    [11]
    丁一汇, 李鸿洲, 章名立, 等.我国飑线发生条件的研究.大气科学, 1982, 6(1):18-27. http://d.wanfangdata.com.cn/Periodical/daqikx201101009
    [12]
    Ogura Y, Chen Y L.A life history of an intense mesoscale convective storm in Oklahoma.J Atmos Sci, 1977, 34(9):1458-1476. doi:  10.1175/1520-0469(1977)034<1458:ALHOAI>2.0.CO;2
    [13]
    蔡则怡, 李鸿洲, 李焕安, 等.华北随线系统的结构与演变特征.大气科学, 1988, 12(2):191-199.
    [14]
    张进, 谈哲敏.启动对流的初始扰动对热带飑线模拟的影响.大气科学, 2008, 32(2):309-322. http://d.wanfangdata.com.cn/Periodical/daqikx200802010
    [15]
    Fujita T T.The Downburst, Microburst and Macroburst.Satellite and Mesometeorology Research Project, University of Chicago, 1985.
    [16]
    Schmidt J M, Cotton W R.A high plains squall line associated with severe surface winds.J Atmos Sci, 1989, 46(3):281-302. doi:  10.1175/1520-0469(1989)046<0281:AHPSLA>2.0.CO;2
    [17]
    Wang J J, Carey L D.The development and structure of an oceanic squall-line system during the South China Sea Monsoon Experiment.Mon Wea Rev, 2005, 133(6):1544-1561. doi:  10.1175/MWR2933.1
    [18]
    Atkins N T.Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX.Mon Wea Rev, 2005, 133(8):2275-2296. doi:  10.1175/MWR2973.1
    [19]
    Trapp R J, Weisman M L.Low-level mesovortices within squall lines and bow echoes.Part Ⅱ:Their genesis and implications.Mon Wea Rev, 2003, 131(11):2804-2823. doi:  10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2
    [20]
    俞小鼎, 张爱民, 郑媛媛, 等.一次系列下击暴流事件的多普勒天气雷达分析.应用气象学报, 2006, 17(4):385-393. doi:  10.11898/1001-7313.20060401
    [21]
    许焕斌, 魏绍远.下击暴流的数值模拟研究.气象学报, 1995, 53(2):168-176. doi:  10.11676/qxxb1995.019
    [22]
    孙凌峰, 郭学良, 孙立谭, 等.武汉"6·22"空难下击暴流的三维数值模拟研究.大气科学, 2003, 27(6):1077-1092. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxk200306010&dbname=CJFD&dbcode=CJFQ
    [23]
    陈明轩, 俞小鼎, 谭晓光, 等.北京2004年"7.10"突发性对流强降水的雷达回波特征分析.应用气象学报, 2006, 17(3):333-345. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060359&flag=1
    [24]
    陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040693&flag=1
    [25]
    郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. doi:  10.11898/1001-7313.20150601
    [26]
    Xue M, Droegemeier K, Wong V, et al.Advanced Regional Prediction System. Oklahoma:University of Oklahoma, 1995.
    [27]
    Hu M, Xue M, Brewster K.3DVAR and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the fort worth, Texas, Tornadic Thunderstorms.Part Ⅰ:Cloud analysis and its impact.Mon Wea Rev, 2006, 134(2):699-721. doi:  10.1175/MWR3093.1
    [28]
    徐广阔, 孙建华, 雷霆, 等.多普勒天气雷达资料同化对暴雨模拟的影响.应用气象学报, 2009, 20(1):36-46. doi:  10.11898/1001-7313.20090105
    [29]
    Atkins N T, Arnott J M, Przybylinski R W, et al.Vortex structure and evolution within bow echoes.Part Ⅰ:Single-Doppler and damage analysis of the 29 June 1998 Derecho.Mon Wea Rev, 2004, 132(9):2224-2240. doi:  10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (4165) PDF downloads(414) Cited by()
    • Received : 2017-03-10
    • Accepted : 2017-07-14
    • Published : 2017-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint