Wu Xia, Wang Peijuan, Chen Pengshi, et al. Estimation of crop evapotranspiration under standard conditions for winter wheat in the Huang-Huai-Hai plain. J Appl Meteor Sci, 2017, 28(6): 690-699. DOI:  10.11898/1001-7313.20170605.
Citation: Wu Xia, Wang Peijuan, Chen Pengshi, et al. Estimation of crop evapotranspiration under standard conditions for winter wheat in the Huang-Huai-Hai plain. J Appl Meteor Sci, 2017, 28(6): 690-699. DOI:  10.11898/1001-7313.20170605.

Estimation of Crop Evapotranspiration Under Standard Conditions for Winter Wheat in the Huang-Huai-Hai Plain

DOI: 10.11898/1001-7313.20170605
  • Received Date: 2017-07-14
  • Rev Recd Date: 2017-09-20
  • Publish Date: 2017-11-30
  • Crop evapotranspiration under standard conditions (Ec) is defined as the evapotranspiration from disease-free, well-fertilized crops grown in large fields, under optimum soil water conditions, and achieving full production under the given climatic conditions. The calculation of Ec considers crop and local surface conditions. Ec is the theoretical upper limit of actual evapotranspiration for actual local surface coverage, ensuring objective analysis on crop water requirements and agricultural drought. To summarize the spatial and temporal distribution characteristics and their causes of Ec, daily Ec is calculated based on Penman-Monteith method using meteorological data and satellite remote sensing data from 2000 to 2015. The meteorological data are provided by 27 meteorological stations in the winter wheat growing area of the Huang-Huai-Hai Plain. The satellite remote sensing data are extracted from NASA MODIS products (LAI (MOD15A2) and Albedo (MCD43C3)) at the corresponding location of 27 meteorological stations. Ek is calculated based on single crop coefficient approach recommended by FAO. Results show that daily dynamic changes of Ec and Ek are consistent in the regional tie scale. However, compared with Ek, Ec has a spatial distribution corresponding to the objective reality. The growth period of winter wheat is divided into five stages:Before wintering stage, wintering stage, returning green-jointing stage, heading stage and milky maturity-maturity stage. With the spatial distribution characteristic of higher in the south and lower in the north, the average daily Ec in the whole winter wheat season, wintering stage and returning green-jointing stage is 1.95 mm, 0.46 mm and 2.74 mm, respectively. The average value of Ec is 1.23 mm before wintering stage, and the whole fluctuation of Ec in the Huang-Huai-Hai Plan is small. There is no significant fluctuation in Ec in heading stage and milky maturity-maturity stage except for the middle part of the Huang-Huai-Hai Plain. The average value of Ec is 4.71 mm and 3.72 mm in these two growth stages, respectively. In terms of spatial distribution, extremely significant positive correlation is shown between LAI and Ec in all growth periods. In wintering stage, returning green-jointing stage and milky maturity-maturity stage, Ec also shows a higher significant negative correlation with albedo. During the whole growth period of winter wheat, Ec has a higher partial correlation coefficient with LAI and water vapor pressure. These results can provide basic data for drought monitoring and wet or dry climate zoning in China, and also provide a new idea for the actual evapotranspiration estimation.
  • Fig. 1  The distribution of meteorological and agro-meteorological stations in the Huang-Huai-Hai Plain

    Fig. 2  Every 8-day dynamic changes of leaf area index in the Huang-Huai-Hai Plain(a) and different latitude intervals(b)

    Fig. 3  Daily dynamic changes of albedo in the Huang-Huai-Hai Plain(a) and different latitude intervals(b)

    Fig. 4  Daily dynamic changes of crop evapotranspiration

    (a)Ec and Ek in the Huang-Huai-Hai Plain, (b)Ec in different latitude intervals

    Fig. 5  Scatter map of Ec and Ek

    Fig. 6  The spatial distribution of Ec in the growth period of winter wheat

    Fig. 7  The spatial distribution of daily Ec in different growth periods of winter wheat

    Table  1  The day of year (DOY) in different growth periods of winter wheat

    范围 气象站数 播种期 越冬期 返青期 抽穗期 乳熟期 成熟期
    [31.34°N, 34.00°N] 9 294 次年3 次年49 次年105 次年136 次年148
    (34.00°N, 36.00°N] 6 287 359 次年49 次年111 次年142 次年153
    (36.00°N, 38.00°N] 7 284 345 次年60 次年118 次年146 次年158
    (38.00°N, 40.48°N] 5 277 340 次年67 次年125 次年150 次年161
    DownLoad: Download CSV

    Table  2  The partial correlation and its significant test between annual average Ec and remote sensing data, meteorological factors in different growth periods of winter wheat

    要素 生育期
    越冬前 越冬期 返青-拔节期 抽穗期 乳熟-成熟期 全生育期
    叶面积指数 0.841** 0.981** 0.931** 0.872** 0.947** 0.905**
    地表反照率 0.172 -0.482* -0.506* -0.226 -0.410* -0.326
    最高气温 0.636** 0.327 0.255 -0.058 0.674** 0.305
    水汽压 0.186 -0.240 0.436* -0.407* -0.565** -0.571**
    最低气温 0.529* 0.693** 0.444* 0.433* 0.378* 0.362
    日照时数 -0.380* 0.150 0.126 0.015 0.714** 0.140
    风速 0.205 -0.639** -0.356 0.018 -0.452* 0.071
    注:**表示达到0.01的显著性水平,*表示达到0.1的显著性水平。
    DownLoad: Download CSV
  • [1]
    中国种植业信息网农作物数据库. [2012-03-18]. http://www.zzys.gov.cn/nongqing.aspx.
    [2]
    IPCC.Climate Change 2014:Impacts, Adaptation, and Vulnerability.Cambridge:Cambridge University Press, 2014.
    [3]
    郭建平.气候变化对中国农业生产的影响研究进展.应用气象学报, 2015, 26(1):1-11. doi:  10.11898/1001-7313.20150101
    [4]
    杨沈斌, 申双和, 赵小艳, 等.气候变化对长江中下游稻区水稻产量的影响.作物学报, 2010, 36(9):1519-1528. http://d.wanfangdata.com.cn/Periodical/zuowxb201009013
    [5]
    周广胜, 何奇瑾, 汲玉河.适应气候变化的国际行动和农业措施研究进展.应用气象学报, 2016, 27(5):527-533. doi:  10.11898/1001-7313.20160502
    [6]
    马晓群, 张辉.近30年安徽省地表干湿时空变化及对农业影响.应用气象学报, 2007, 18(6):783-790. doi:  10.11898/1001-7313.200706120
    [7]
    Yao F M, Zhang J H, Sun B N.Simulation and analysis of effects of climate change on rice yields in southern China.Climatic & Environmental Research, 2007, 12(5):659-666. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHYH200705009.htm
    [8]
    张宇, 王石立.气候变化对我国小麦发育及产量可能影响的模拟研究.应用气象学报, 2000, 11(3):264-270. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000341&flag=1
    [9]
    王馥棠.近十年来我国气候变暖影响研究的若干进展.应用气象学报, 2002, 13(6):755-766. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020699&flag=1
    [10]
    姚凤梅.气候变化对中国粮食产量的影响及模拟.北京:气象出版社, 2008.
    [11]
    成林, 方文松.气候变化对雨养冬小麦水分利用效率的影响估算.应用气象学报, 2015, 26(3):300-310. doi:  10.11898/1001-7313.20150305
    [12]
    Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements.FAO-56 Irrigation and Drainage Paper 56.FAO-56, 1998.
    [13]
    刘钰, Pereira L S.对FAO推荐的作物系数计算方法的验证.农业工程学报, 2000, 16(5):26-30. http://d.wanfangdata.com.cn/Periodical/nygcxb200005007
    [14]
    宿梅双, 李久生, 饶敏杰.基于称重式蒸渗仪的喷灌条件下冬小麦和糯玉米作物系数估算方法.农业工程学报, 2005, 21(8):25-29. http://d.wanfangdata.com.cn/Periodical/nygcxb200508006
    [15]
    李贺丽, 罗毅, 赵春江, 等.基于冠层光谱植被指数的冬小麦作物系数估算.农业工程学报, 2013, 29(20):118-127. doi:  10.3969/j.issn.1002-6819.2013.20.017
    [16]
    左余宝, 田昌玉, 唐继伟, 等.鲁北地区主要作物不同生育期需水量和作物系数的试验研究.中国农业气象, 2009, 30(1):70-73. http://d.wanfangdata.com.cn/Periodical/zgnyqx200901015
    [17]
    赵娜娜, 刘钰, 蔡甲冰.夏玉米作物系数计算与耗水量研究.水利学报, 2010, 41(8):953-959. http://d.wanfangdata.com.cn/Periodical/ghdqnyyj200204017
    [18]
    侯琼, 王海梅, 云文丽, 等.内蒙古河套灌区春玉米作物系数试验研究.应用气象学报, 2016, 27(4):417-425. doi:  10.11898/1001-7313.20160404
    [19]
    Bandyopadhyay P K, Mallick S.Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area.Agricultural Water Management, 2003, 59(1):33-47. doi:  10.1016/S0378-3774(02)00112-9
    [20]
    Kang S, Gu B, Du T, et al.Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region.Agricultural Water Management, 2003, 59(3):239-254. doi:  10.1016/S0378-3774(02)00150-6
    [21]
    刘海军, 康跃虎.冬小麦拔节抽穗期作物系数的研究.农业工程学报, 2006, 22(10):52-56. doi:  10.3321/j.issn:1002-6819.2006.10.011
    [22]
    石元春, 贾大林.黄淮海平原农业图集.北京:北京农业大学出版社, 1989.
    [23]
    中国气象局. 气象数据网. [2016-08-30]. http://data.cma.cn/site/index.html.
    [24]
    美国宇航局. [2017-03-02]. http://reverb.echo.nasa.gov/.
    [25]
    Fisher R A.Statistical Methods for Research Workers.London:Oliver and Boyd, 1934.
    [26]
    毛飞, 张光智, 徐祥德.参考作物蒸散量的多种计算方法及其结果的比较.应用气象学报, 2000, 11(增刊Ⅰ):128-136. http://d.wanfangdata.com.cn/Periodical/yyqxxb2000Z1017
    [27]
    王靖, 李湘阁, 刘恩民, 等.华北平原冬小麦相对蒸散与叶面积指数及表层土壤含水量的关系.中国生态农业学报, 2003, 11(2):32-34. http://d.wanfangdata.com.cn/Periodical/stnyyj200302010
    [28]
    Tian Y, Woodcock C E, Wang Y, et al.Multiscale analysis and validation of the MODIS LAI product:Ⅰ.Uncertainty assessment.Remote Sens Environ, 2002, 83(3):414-430. doi:  10.1016/S0034-4257(02)00047-0
    [29]
    付立哲, 屈永华, 王锦地.MODIS LAI产品真实性检验与偏差分析.遥感学报, 2017, 21(2):206-217. http://d.wanfangdata.com.cn/Periodical/ygxb201702004
    [30]
    孙宏勇, 刘昌明, 张喜英, 等.华北平原冬小麦田间蒸散与棵间蒸发的变化规律研究.中国生态农业学报, 2004, 12(3):62-64. http://d.wanfangdata.com.cn/Periodical/stnyyj200403017
    [31]
    莫兴国, 刘苏峡, 林忠辉, 等.华北平原蒸散和GPP格局及其对气候波动的响应.地理学报, 2011, 66(5):589-598. doi:  10.11821/xb201105002
    [32]
    莫兴国, 薛玲, 林忠辉.华北平原1981~2001年作物蒸散量的时空分异特征.自然资源学报, 2005, 20(2):181-187. doi:  10.11849/zrzyxb.2005.02.004
    [33]
    吴喜芳, 沈彦俊, 张丛, 等.基于植被遥感信息的作物蒸散量估算模型——以华北平原冬小麦为例.中国生态农业学报, 2014, 22(8):920-927. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgtn201408010&dbname=CJFD&dbcode=CJFQ
    [34]
    赵静, 邵景力, 崔亚莉, 等.利用遥感方法估算华北平原陆面蒸散量.城市地质, 2009, 4(1):43-48. http://d.wanfangdata.com.cn/Periodical/csdz200901009
    [35]
    Yang J Y, Mei X R, Huo Z G, et al.Water consumption in winter wheat and summer maize cropping system based on SEBAL model in Huang-Huai-Hai Plain, China.Journal of Integrative Agriculture, 2015, 14(10):2065-2076. doi:  10.1016/S2095-3119(14)60951-5
    [36]
    杨建莹. 基于SEBAL模型的黄淮海冬小麦和夏玉米水分生产力研究. 北京: 中国农业科学院, 2014. http://cdmd.cnki.com.cn/Article/CDMD-82101-1014326338.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (4650) PDF downloads(261) Cited by()
    • Received : 2017-07-14
    • Accepted : 2017-09-20
    • Published : 2017-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint