Chu Zhigang, Xu Dan, Wang Zhenhui, et al. Consistent correction to ground-based radars in the lower reachers of the Yangtze based on TRMM/PR observations. J Appl Meteor Sci, 2018, 29(3): 296-306. DOI:  10.11898/1001-7313.20180304.
Citation: Chu Zhigang, Xu Dan, Wang Zhenhui, et al. Consistent correction to ground-based radars in the lower reachers of the Yangtze based on TRMM/PR observations. J Appl Meteor Sci, 2018, 29(3): 296-306. DOI:  10.11898/1001-7313.20180304.

Consistent Correction to Ground-based Radars in the Lower Reachers of the Yangtze Based on TRMM/PR Observations

DOI: 10.11898/1001-7313.20180304
  • Received Date: 2017-09-11
  • Rev Recd Date: 2018-03-01
  • Publish Date: 2018-05-31
  • There are almost 200 ground-based operational Doppler weather radars in China's new generation weather radar network, accumulating a large amount of radar data continuously for nearly 20 years. These historical data from weather radars are essential for researches related to China's radar climatology. However, reflectivity factors of two adjacent radars are often found inconsistent in observation overlap area, which is similar to the WSR-88D (Weather Surveillance Radar-1988 Doppler) in US. Some reflectivity differences are reported more than 3 dB. The fundamental cause for this problem is that different radar has different calibration error which will cause a reflectivity factor bias. Reflectivity differences of two adjacent radars will certainly reduce accuracy and precision of multiple radars joint Quantitative Precipitation Estimation and Nowcasting. Therefore, a ground-based radar correction method based on TRMM/PR (Tropical Rainfall Measuring Mission/Precipitation Radar) observations is proposed, which is named as Selective Comparison Method. Ground-based radar and TRMM/PR data are spatially matched and the abnormal values are gradually eliminated to extract an Optimal Matchup Datasets with relatively high correlation coefficient in the new method. Then the ground-based radar bias is calculated and corrected with the Optimal Matchup Datasets. The Selective Comparison Method is applied for consistency correction to seven S-band radars in the lower reaches of the Yangtze from May to September in 2013. Results show that annual reflectivity factor biases of three radars are greater than 1.5 dB among seven ground-based radars in the research area. These biases lead to some differences in adjacent radar observations and bring about a significant spatial discontinuity in multiple radar reflectivity fields. After correction, the average reflectivity differences of seven radars significantly decrease from 1.8 dB to 0.5 dB. Furthermore, all reflectivity differences between two adjacent radars are less than 1.0 dB. The reflectivity factor consistency and spatial continuity of multiple radars are greatly improved. Comparing to the traditional Geometric Matchup Method, the Selective Comparison Method performs better, and it overcomes the problem that some radars may be over-corrected. This correction method is only suitable for the quality control of historical ground-based radar data because TRMM/PR stopped its observations in 2014. Further improvements are still needed to extend this method to GPM/DPR to achieve real-time radar data processing in the future.
  • Fig. 1  Seven ground-based radars in the lower reaches of the Yangtze

    (dashed lines represent radar coverages of 150 km)

    Fig. 2  Available matching events between ground-based radar and TRMM/PR from May to Sep in 2013

    Fig. 3  Correlation coefficient(a) and standard deviation(b) of reflectivity difference between ground-based radar and TRMM/PR at different distances

    Fig. 4  Correlation coefficient(a) and standard deviation(b) of reflectivity difference between ground-based radar and TRMM/PR at different levels

    Fig. 5  Correlation coefficient(a) and standard deviation(b) of difference between ground-based radar and TRMM/PR from the first step to the fifth step

    Fig. 6  Scatter plot of matchup data before selection(a), after selection(b) and after correction(c)

    Fig. 7  Annual(a) and monthly(b) average reflectivity biases of ground-based radars

    Fig. 8  Annual average reflectivity differences of adjacent ground-based radars

    Fig. 9  Monthly average reflectivity differences of adjacent ground-based radars

    (a)uncorrected, (b)corrected by GM_ICE, (c)corrected by GM_WATER, (d)corrected by Selective Comparison Method

    Table  1  Differences between ground-based radar and TRMM/PR observations

    参数 地基雷达 TRMM/PR
    波段(波长) S波段(10 cm) Ku波段(2.2 cm)
    300 km×300 km区域扫描时间/min 6 2
    扫描方式 从下而上 从上而下
    衰减影响 可忽略 严重
    地物影响 严重
    有效照射体积 1 km×1°×1° 5 km×5 km×0.25 km
    最小雷达反射率因子/dBZ -10 18.5
    DownLoad: Download CSV
  • [1]
    张沛源, 周海光, 胡绍萍.双多普勒天气雷达风场探测的可靠性研究.应用气象学报, 2002, 13(4):485-496.
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39.
    陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766.
    陈明轩, 高峰, 孙娟珍, 等.基于VDRAS的快速更新雷达四维变分分析系统.应用气象学报, 2016, 27(3):257-272. doi:  10.11898/1001-7313.20160301
    杨艳蓉, 李柏, 张沛源.多普勒雷达资料四维变分同化.应用气象学报, 2004, 15(1):95-110.
    肖艳姣, 刘黎平.新一代天气雷达网资料的三维格点化及拼图方法研究.气象学报, 2006, 64(5):647-657. doi:  10.11676/qxxb2006.063
    刘黎平, 张沛源, 梁海河, 等.双多普勒雷达风场反演误差和资料的质量控制.应用气象学报, 2003, 14(1):17-29.
    史锐, 程明虎, 崔哲虎, 等.长江流域多普勒雷达回波强度资料对比分析.气象, 2004, 30(11);27-31.
    Brandes E A, Vivekanandan J, Wilson J W.A comparison of radar reflectivity estimates of rainfall from collocated radars.J Atmos Ocean Technol, 1999, 16:1264-1272. doi:  10.1175/1520-0426(1999)016<1264:ACORRE>2.0.CO;2
    Gourley J, Kaney B, Maddox R. Evaluating the Calibrations of Radars: A Software Approach//Preprints, 31st Conference on Radar Meteorology, Amer Meteor Soc, 2003.
    You C H, Kang M Y, Lee D I, et al.Approaches to radar reflectivity bias correction to improve rainfall estimation in Korea.Atmos Meas Tech, 2016, 9:2043-2053. doi:  10.5194/amt-9-2043-2016
    潘新民.新一代天气雷达(CINRAD/SB)技术特点和维护、维修方法.北京:气象出版社, 2009.
    张培昌, 戴铁丕, 杜秉玉, 等.雷达气象学.北京:气象出版社, 1988.
    韩静, 楚志刚, 王振会, 等.苏南三部地基雷达反射率因子一致性和偏差订正.高原气象, 2017, 36(6):1665-1673. doi:  10.7522/j.issn.1000-0534.2016.00137
    Atlas D.Radar calibration:Some simple approaches.Bull Amer Meteor Soc, 2002, 83:1313-1316.
    潘新民, 柴秀梅, 崔柄俭, 等.CINRAD/SB雷达回波强度定标调校方法.应用气象学报, 2010, 21(6):739-746. doi:  10.11898/1001-7313.20100611
    王振会.TRMM卫星测雨雷达及其应用研究综述.气象科学, 2001, 21(4):491-500.
    Kawanishi T, Kuroiwa H, Kojima M, et al.TRMM precipitation radar.Adv Space Res, 2000, 25:969-972. doi:  10.1016/S0273-1177(99)00932-1
    Kozu T, Kawanishi T, Kuroiwa H, et al.Development of precipitation radar on board the Tropical Rainfall Measuring Mission (TRMM) satellite.IEEE Trans Geosci Remote Sens, 2001, 39:102-116. doi:  10.1109/36.898669
    Takahashi N, Kuroiwa H, Kawanishi T.Four-year result of external calibration for precipitation radar (PR) of the tropical rainfall measuring mission (TRMM) satellite.IEEE Trans Geosci Remote Sens, 2003, 41:2398-2403. doi:  10.1109/TGRS.2003.817180
    Liao L, Meneghini R, Iguchi T, et al.Comparisons of rain rate and reflectivity factor Derived from the TRMM Precipitation Radar and the WSR-88D over the Melbourne, Florida, Site.J Atmos Ocean Technol, 2001, 18:1959-1974. doi:  10.1175/1520-0426(2001)018<1959:CORRAR>2.0.CO;2
    Wang J X, Wolff D B.Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars.J Atmos Ocean Technol, 2009, 26:857-875. doi:  10.1175/2008JTECHA1175.1
    Park S, Jung S, Lee G.Cross validation of TRMM PR reflectivity profiles using 3-D reflectivity composite from the ground-based radar network over the Korean Peninsula.J Hydrometeor, 2015, 16:668-687. doi:  10.1175/JHM-D-14-0092.1
    朱艺青, 王振会, 李南, 等.南京雷达数据的一致性分析和订正.气象学报, 2016, 74(2):298-308.
    寇蕾蕾, 楚志刚, 李南, 等.TRMM星载测雨雷达和地基雷达反射率因子数据的三维融合.气象学报, 2016, 74(2):285-297.
    Hamada A, Takayabu Y N.A Removal filter for suspicious extreme rainfall profiles in TRMM PR 2A25 version-7 data.J Appl Meteorol Climatol, 2014, 53:1252-1271. doi:  10.1175/JAMC-D-13-099.1
    Iguchi T, Kozu T, Meneghini R, et al.Rain-Profiling Algorithm for the TRMM Precipitation Radar.J Appl Meteor, 2000, 39:2038-2052. doi:  10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2
    Bolen S M, Chandrasekar V.Methodology for aligning and comparing spaceborne radar and ground-based radar observations.J Atmos Oceanic Technol, 2003, 20:647-659. doi:  10.1175/1520-0426(2003)20<647:MFAACS>2.0.CO;2
    Meneghini R, Iguchi T, Kozu T, et al.Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar.J Appl Meteor, 2000, 39:2053-2070. doi:  10.1175/1520-0450(2001)040<2053:UOTSRT>2.0.CO;2
    Schwaller M R, Morris K R.A ground validation network for the Global Precipitation Measurement Mission.J Atmos Ocean Technol, 2011, 28:301-319. doi:  10.1175/2010JTECHA1403.1
    Liao L, Meneghini R.Changes in the TRMM Version-5 and Version-6 Precipitation Radar Products due to Orbit Boost.J Meteor Soc Japan, 2009, 87:93-107.
    王振会, 李圣殷, 戴建华, 等.星载雷达与地基雷达数据的个例对比分析.高原气象, 2015, 34(3):804-814. doi:  10.7522/j.issn.1000-0534.2014.00031
    刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):252-260. doi:  10.11676/qxxb2007.024
    江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. doi:  10.11898/1001-7313.20090210
    Bolen S M, Chandrasekar V.Quantitative cross validation of space-based and ground-based radar observations.J Appl Meteor, 2000, 39:2071-2079. doi:  10.1175/1520-0450(2001)040<2071:QCVOSB>2.0.CO;2
    Awaka J, Iguchi T, Okamoto K.TRMM PR standard algorithm 2A23 and its performance on bright band detection.J Meteor Soc Japan, 2009, 87:31-52.
    周海光.新一代多普勒天气雷达网探测数据对比分析系统.计算机应用, 2013, 33(1):270-275.
    Hou A Y, Kakar R K, Neeck S, et al.The Global Precipitation Measurement Mission.Bull Amer Meteor Soc, 2014, 95:701-722. doi:  10.1175/BAMS-D-13-00164.1
  • 加载中
  • -->


    Figures(9)  / Tables(1)

    Article views (3519) PDF downloads(200) Cited by()
    • Received : 2017-09-11
    • Accepted : 2018-03-01
    • Published : 2018-05-31


    DownLoad:  Full-Size Img  PowerPoint