Zhuang Zhaorong, Wang Ruichun, Wang Jincheng, et al. Characteristics and application of background errors in GRAPES_Meso. J Appl Meteor Sci, 2019, 30(3): 316-331. DOI:  10.11898/1001-7313.20190306.
Citation: Zhuang Zhaorong, Wang Ruichun, Wang Jincheng, et al. Characteristics and application of background errors in GRAPES_Meso. J Appl Meteor Sci, 2019, 30(3): 316-331. DOI:  10.11898/1001-7313.20190306.

Characteristics and Application of Background Errors in GRAPES_Meso

DOI: 10.11898/1001-7313.20190306
  • Received Date: 2018-12-18
  • Rev Recd Date: 2019-02-11
  • Publish Date: 2019-05-31
  • The statistic structure of background covariance is studied by NMC method of USA based on GRAPES regional model forecast data spanning one year from June 2015 to May 2016. The horizontal correlation length scale is estimated with Gauss function linear fitting method. Characteristics of background error and horizontal correlation length scale with the latitude, height and season are investigated. Results show that background error and horizontal correlation characteristic scale obviously change with height and latitude, and the unbalanced non-dimensional pressure and humidity are closely related to the season. Background errors of four control variables are nonhomogeneous, among which background errors of stream function and unbalanced velocity potential mainly change with latitude and height, background errors of unbalanced non-dimensional pressure and humidity show local and seasonal characteristics. The biggest background errors of the unbalanced non-dimensional pressure occur in the Tibetan Plateau, and they are larger in winter while smaller in summer. The biggest background errors of humidity happen in low latitude of tropical monsoon region, and they are larger in summer while smaller in winter. The horizontal correlation length scales of four control variables with Gauss function fitting are reasonable except that correlation coefficients of the unbalanced non-dimensional pressure are overestimated in close distance and underestimated in far distance. Horizontal correlation length scales of steam, unbalanced velocity potential and humidity obviously change with height are largest in tropopause. The length scale of unbalanced non-dimensional pressure obviously changes with latitude and is larger in low latitude of middle tropospheric. The horizontal correlation length scale of the unbalanced non-dimensional pressure and humidity both are larger in winter and smaller in summer. The horizontal correlation length scales changing with height are used in GRAPES-3DVar system instead of single parameter, and then the analysis and forecast experiment results of one month indicate that, qualities of 6-hour geopotential height forecast in troposphere are improved. Analysis and 12-hour forecast of wind in stratosphere are greatly improved; all levels of 24-hour accumulated precipitation forecast are obviously improved; the false prediction of 24-hour accumulated precipitation of light rain, moderate rain and heavy rain are improved; 12-24-hour accumulated precipitation of extra torrential rain in control test fails to be reported, but the experiment with changing horizontal correlation length scales improves forecasts of positions and values for extra torrential rain.
  • Fig. 1  Background errors for stream function(a), unbalanced velocity potential(b), unbalanced non-dimensional pressure(c) and specific humidity(d) at level 10

    Fig. 2  The same as in Fig. 1, but for changes with latitude and height

    Fig. 3  The same as in Fig. 1, but for changes with seasons

    Fig. 4  Background errors for unbalanced non-dimensional pressure at level 5 along 35°N

    (black thick line denotes terrain)

    Fig. 5  Horizontal correlation for statistical samples(grey dashed line) and fitting curve of Gauss function(black thick line)

    (a)stream function, (b)unbalanced velocity potential, (c)unbalanced non-dimensional pressure, (d)specific humidity

    Fig. 6  Horizontal correlation length changes with height and altitude(unit:102 km) (a)stream function, (b)unbalanced velocity potential, (c)unbalanced non-dimensional pressure, (d)specific humidity

    Fig. 7  The same as in Fig. 6, but for changes with seasons

    Fig. 8  The same as in Fig. 6, but for changes with height

    Fig. 9  The bias and root mean square error of geopotential height(a), temperature(b), u-component(c) and v-component(d) between GRAPES_Meso analysis and NCEP FNL analysis

    Fig. 10  The same as in Fig. 9, but for GRAPES_Meso 12-hour forecast

    Fig. 11  Averaged ETS of precipitation forecast in China from 1 Aug to 31 Aug in 2016

    (a)0-6 hours, (b)6-12 hours, (c)12-18 hours, (d)18-24 hours

    Fig. 12  Averaged bias score of precipitation forecast in China from 1 Aug to 31 Aug in 2016

    (a)0-6 hours, (b)6-12 hours, (c)12-18 hours, (d)18-24 hours

  • [1]
    Houtekamer P L, Mitchell H L.A sequential ensemble Kalman filter for atmospheric data assimilation.Mon Wea Rev, 2001, 129:123-137. doi:  10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
    [2]
    Bannister R N.A review of forecast error covariance statistics in atmospheric variational data assimilation.I:Characteristics and measurements of forecast error covariances.Q J R Meteorol Soc, 2008, 134:1951-1970. doi:  10.1002/qj.v134:637
    [3]
    Hollingsworth A, Lonnberg P.The statistical structure of short-range forecast errors as determined from radiosonde data.Part Ⅰ:The wind field.Tellus, 1986, 38A:111-136. doi:  10.1111/tela.1986.38A.issue-2
    [4]
    Lonnberg P, Hollingsworth A.The statistical structure of short-range forecast errors as determined from radiosonde data.Part Ⅱ:The covariance of height and wind errors.Tellus, 1986, 38A:137-161. doi:  10.1111/tela.1986.38A.issue-2
    [5]
    Franke R.Three-dimensional covariance functions for NOGAPS data.Mon Wea Rev, 1999, 127:2293-2308. doi:  10.1175/1520-0493(1999)127<2293:TDCFFN>2.0.CO;2
    [6]
    Xu Qin, Li Wei, Andrew V T, et al.Estimation of three-dimensional error covariances.Part I:Analysis of height innovation vectors.Mon Wea Rev, 2001, 129:2126-2135. doi:  10.1175/1520-0493(2001)129<2126:EOTDEC>2.0.CO;2
    [7]
    庄照荣, 薛纪善, 庄世宇, 等.资料同化中背景场位势高度误差统计分析的研究.大气科学, 2006, 30(3):533-544. doi:  10.3878/j.issn.1006-9895.2006.03.16
    [8]
    Parrish D, Derber J.The national meteorological center spectral statistical interpolation analysis.Mon Wea Rev, 1992, 120:1747-1763. doi:  10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    [9]
    Dee D, Gaspari G.Development of Anisotropic Correlation Models for Atmospheric Data Assimilation.The 11th Conference on Numerical Weather Prediction.American Meteorological Society, 1996:249-251.
    [10]
    Ingleby B N.The statistical structure of forecast errors and its representation in The Met Office Global 3-D Variational Data Assimilation Scheme.Q J R Meteorol Soc, 2001, 127:209-231. doi:  10.1002/(ISSN)1477-870X
    [11]
    Wu Wanshu, Purser R J.Three-dimensional variational analysis with spatially inhomogeneous covariances.Mon Wea Rev, 2002, 130:2905-2916. doi:  10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
    [12]
    王金成, 庄照荣, 韩威, 等.GRAPES全球变分同化背景误差协方差的改进及对分析预报的影响:背景误差协方差三维结构的估计.气象学报, 2014, 72(1):62-78. http://d.old.wanfangdata.com.cn/Periodical/qxxb201401005
    [13]
    王亚华, 杨晓帆, 曾勇虎, 等.GRAPES全球模式背景误差协方差水平结构特征分析.干旱气象, 2017, 35(1):57-63. http://d.old.wanfangdata.com.cn/Periodical/ghqx201701008
    [14]
    Evensen G.The ensemble Kalman filter:Theoretical formulation and practical implementation.Ocean Dynamics, 2003, 53:343-367. doi:  10.1007/s10236-003-0036-9
    [15]
    庄照荣, 薛纪善, 李兴良.GRAPES集合卡尔曼滤波资料同化系统Ⅰ:系统设计及初步试验.气象学报, 2011, 69(4):620-630. http://d.old.wanfangdata.com.cn/Periodical/qxxb201105010
    [16]
    庄照荣, 薛纪善, 李兴良.GRAPES集合卡尔曼滤波资料同化系统Ⅱ:区域分析及集合预报.气象学报, 2011, 69(5):860-871. http://d.old.wanfangdata.com.cn/Periodical/qxxb201105010
    [17]
    Bishop C H, Etherton B J, Majumdar S J.Adaptive sampling with the ensemble transform Kalman filter.Part Ⅰ:Theoretical aspects.Mon Wea Rev, 2001, 129:420-436. doi:  10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
    [18]
    马旭林, 薛纪善, 陆维松.GRAPES全球集合预报的集合卡尔曼变换初始扰动方案初步研究.气象学报, 2008, 66(4):526-536. doi:  10.3321/j.issn:0577-6619.2008.04.006
    [19]
    Polavarapu S, Ren S, Rochon Y, et al.Data assimilation with the Canadian middle atmosphere model.Atmos Ocean, 2005, 43:77-100. doi:  10.3137/ao.430105
    [20]
    Bannister R N.A review of forecast error covariance statistics in atmospheric variational data assimilation.Ⅱ:Modelling the forecast error covariance statistics.Q J R Meteorol Soc, 2008, 134:1971-1996. doi:  10.1002/qj.v134:637
    [21]
    王瑞春, 龚建东, 张林.GRAPES变分同化系统中动力平衡约束的统计求解.应用气象学报, 2012, 23(2):129-138.  http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120201&flag=1
    [22]
    薛纪善, 陈德辉.数值预报系统GRAPES的科学设计与应用.北京:科学出版社, 2008.
    [23]
    薛纪善, 刘艳, 张林, 等.GRAPES全球三维变分同化系统模式变量分析版(文档试用本).2012.
    [24]
    朱宗申, 朱国富.有限区域风速场求解流函数和速度势场的有效方案.应用气象学报, 2008, 19(1):10-18. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080103&flag=1
    [25]
    薛纪善.我国西北高原地区数值预报的几个科学问题.干旱气象, 2005, 23(1):68-71. doi:  10.3969/j.issn.1006-7639.2005.01.013
    [26]
    陈耀登, 赵幸, 闵锦忠, 等.青藏高原和华东地区背景误差协方差特征的对比研究.大气科学学报, 2015, 38(5):650-657. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201505008
    [27]
    央美, 达瓦泽仁, 贡觉顿珠, 等.数值预报产品在藏北高原可预报性检验.安徽农业科学, 2013, 41(17):7620-7623;7675. doi:  10.3969/j.issn.0517-6611.2013.17.082
    [28]
    陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [29]
    黄丽萍, 陈德辉, 邓莲堂, 等.GRAPES_Meso V4.0主要技术改进和预报效果检验.应用气象学报, 2017, 28(1):25-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170103&flag=1
    [30]
    庄照荣, 薛纪善, 韩威, 等.探空观测黑名单检査在变分同化系统中的应用.应用气象学报, 2014, 25(3):274-283. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140303&flag=1
    [31]
    郝民, 龚建东, 田伟红, 等.L波段探空仪湿度资料偏差订正及同化试验.应用气象学报, 2018, 29(5):559-570. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20180505&flag=1
    [32]
    刘艳, 薛纪善, 张林, 等.GRAPES全球三维变分同化系统的检验与诊断.应用气象学报, 2016, 27(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160101&flag=1
    [33]
    王金成, 陆慧娟, 韩威, 等.GRAPES全球三维变分同化业务系统性能.应用气象学报, 2017, 28(1):11-24. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170102&flag=1
    [34]
    朱立娟, 龚建东, 黄丽萍, 等.GRAPES三维云初始场形成及在短临预报中的应用.应用气象学报, 2017, 28(1):38-51. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170104&flag=1
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (3081) PDF downloads(100) Cited by()
    • Received : 2018-12-18
    • Accepted : 2019-02-11
    • Published : 2019-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint