Guo Qiyun, Yang Rongkang, Cheng Kaiqi, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. DOI:  10.11898/1001-7313.20200102.
Citation: Guo Qiyun, Yang Rongkang, Cheng Kaiqi, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. DOI:  10.11898/1001-7313.20200102.

Refractive Index Quality Control and Comparative Analysis of Multi-source Occultation Based on Sounding Observation

DOI: 10.11898/1001-7313.20200102
  • Received Date: 2019-07-01
  • Rev Recd Date: 2019-09-26
  • Publish Date: 2020-01-31
  • Three occultation refractive index data of COSMIC, Metop-A and FY-3C from 1 September 2017 to 31 August 2018 are divided into four climate zones according to climate characteristics, so that the dataset is more consistent with the normal distribution. Occultation refractive index data and the deviation from the sounding are statistically analyzed. According to statistical results, the occultation refractive index data are quality controlled. Results show that the double-weighted mean and the double-weight standard deviation of three occultations refractive index are relatively close, and the overall trends are gradually decreasing with height. There are differences between the double-weighted mean and the double-weighted standard deviation in four climate zones. The subtropical monsoon climate zone is rich in water vapor in the lower troposphere, so its double weight mean and standard deviation are larger than those in other three climate zones. In the statistical calculation of the deviation from the sounding, the COSMIC is negative below 5 km, the subtropical monsoon climate zone has large deviation. The deviation of FY-3C in subtropical monsoon climate zone is positive below 2 km, negative between 2-6 km, positive again above 6 km, and the overall deviation is within 2 N. According to different statistical characteristics of deviations in four climate zones, different quality control standards are formulated, and error data and suspicious data are screened out. The threshold value of the correlation coefficient between the occultation and the sounding refractive index determined by statistical calculation is 0.44, and suspiciousness smaller than 0.44 is taken as wrong data. Below 1 km, the proportion of error data in quality control of occultation itself is 5%-10%. Above 1 km, within 5%, three occultations are relatively close. After importing the sounding observation reference, quality control data of Metop-A occultation in the plateau mountain climate area are increasing, while the others are about 6%. Comparing the correlation coefficient between occultations and the sounding before and after quality control, the value is smaller before the quality control. After error data being eliminated, the correlation between the occultations and the sounding refractive index is improved, mostly above 0.9. The control is effective, and the quality of the occultation data is improved.
  • Fig. 1  Climate zones(a) and 120 sounding stations(b) in China

    Fig. 2  Double-weighted mean and double-weighted standard deviation profiles of occultation refractive index in four climate zones

    Fig. 3  Suspicious thresholds and error threshold interval of COSMIC refractive index of in four climate zones comparing to refractive index profiles at a single moment

    Fig. 4  Double-weighted mean and double-weighted standard deviation profiles of occultation refractive index deviations in four climate zones

    Fig. 5  Suspicious thresholds and false thresholds of COSMIC refractive index deviation in four climate zones comparing to refractive index deviation profiles at a single moment

    Fig. 6  Correlation coefficients of reflective indices between occultations and the sounding in four climate zones

    Fig. 7  Error data distribution of occultation refractive index in subtropical monsoon climate zone

    Fig. 8  Percentage of occultation error data in the first-step quality control

    Fig. 9  Percentage of occultation error data in the second-step quality control

    Fig. 10  Correlation coefficient between occultation and sounding refraction index before quality control, after the first-step and the final quality controls in the subtropical monsoon climate zone

    Table  1  The number of profiles provided by occultations matching with sounding stations in four climate zones

    掩星 温带大陆 亚热带季风 温带季风 高原山地
    COSMIC 263 133 121 72
    Metop-A 309 373 291 43
    FY-3C 90 81 97 7
    DownLoad: Download CSV
  • [1]
    郭启云, 杨加春, 杨荣康, 等.球载式下投国产北斗探空仪测风性能评估.南京信息工程大学学报(自然科学版), 2018, 10(5):629-640. http://d.old.wanfangdata.com.cn/Periodical/njxxgcdxxb201805015
    [2]
    曹晓钟, 郭启云, 杨荣康.基于长时平漂间隔的上下二次探空研究.仪器仪表学报, 2019, 40(2):198-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201902023
    [3]
    郭启云, 杨荣康, 钱媛, 等.气球携带探空仪上升和降落伞携带探空仪下降的全程探空对比分析.气象, 2018, 44(8):1094-1103. http://d.old.wanfangdata.com.cn/Periodical/qx201808011
    [4]
    雷勇, 郭启云, 钱媛, 等.L波段雷达探空高度评估及其质量标识.应用气象学报, 2018, 29(6):710-723. doi:  10.11898/1001-7313.20180607
    [5]
    吴蕾, 陈洪滨, 康雪.风廓线雷达与L波段雷达探空测风对比分析.气象科技, 2014, 42(2):225-230. doi:  10.3969/j.issn.1671-6345.2014.02.008
    [6]
    蔡兆男, 王永, Liu Xiong, 等.利用探空资料验证COME卫星臭氧数据.应用气象学报, 2009, 20(3):337-345. doi:  10.3969/j.issn.1001-7313.2009.03.010
    [7]
    彭艳秋, 王卫国, 刘煜, 等.利用不同资料研究我国大陆上空柱水汽含量.应用气象学报, 2012, 23(1):59-68. doi:  10.3969/j.issn.1001-7313.2012.01.007
    [8]
    朱元竞, 李万彪, 陈勇.GMS-5估计可降水量的研究.应用气象学报, 1998, 9(1):8-14. http://qikan.camscma.cn/jamsweb/article/id/19980102
    [9]
    王洪, 曹云昌, 肖稳安.COSMIC掩星数据与L波段探空数据的对比分析.气象, 2010, 36(9):14-20. http://d.old.wanfangdata.com.cn/Periodical/qx201009003
    [10]
    杜明斌, 杨引明, 丁金才.COSMIC反演精度和有关特性的检验.应用气象学报, 2009, 20(5):586-593. doi:  10.3969/j.issn.1001-7313.2009.05.010
    [11]
    Teunissen P J G, Montenbruck O.Handbook of Global Navigation Satellite Systems.Springer International Publishing A G, 2017:1120-1138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Zok8fUkw9I2rDxjS6hNLuwPKh4ZXcGThdqL3mhUhWc8=
    [12]
    Anthes R A, Bernhard P A, Chen Y, et al.The COSMIC/FORMOSAT-3 mission:Early results. Bull Amer Meteor Soc, 2008, 89(3):313-333. doi:  10.1175/BAMS-89-3-313
    [13]
    Rocken C, Kuo Y H, Schreiner W S, et al.COSMIC system description.Terr Atmos Ocean Sci, 2000, 11(1):21-52. doi:  10.3319/TAO.2000.11.1.21(COSMIC)
    [14]
    丁金才, 郭英华, 郭永润, 等.利用COSMIC资料对17个台风热力结构的合成分析.热带气象学报, 2011, 27(1):31-43. doi:  10.3969/j.issn.1004-4965.2011.01.004
    [15]
    宋晓姜, 杨学联, 邢建勇.GPS掩星资料三维变分同化对台风模式预报的改进试验.海洋学报, 2013, 35(5):67-75. doi:  10.3969/j.issn.0253-4193.2013.05.007
    [16]
    王金成, 龚建东, 赵滨.一种新的COSMIC大气折射率资料观测误差估计方法及在GRAPES全球三维变分同化中的应用.气象学报, 2015, 73(1):142-158. http://d.old.wanfangdata.com.cn/Periodical/qxxb201501011
    [17]
    曾桢, 张训械, 熊建刚, 等.无线电掩星技术及其应用.电波科学学报, 2002, 17(5):549-556. doi:  10.3969/j.issn.1005-0388.2002.05.024
    [18]
    徐桂荣, 乐新安, 张文刚, 等.COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析.暴雨灾害, 2016, 35(4):315-325. doi:  10.3969/j.issn.1004-9045.2016.04.003
    [19]
    王树志, 朱光武, 白伟华, 等.风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测.物理学报, 2015, 64(8):408-415. http://d.old.wanfangdata.com.cn/Periodical/wlxb201508054
    [20]
    马再忠, 郭英华, 王斌.GPS掩星观测的发展及其在气象业务中的应用现状.气象学报, 2011, 69(1):208-218. http://d.old.wanfangdata.com.cn/Periodical/qxxb201101018
    [21]
    孙学金, 赵世军, 余鹏.GPS掩星切点水平漂移规律的数值研究.应用气象学报, 2004, 15(2):174-180. doi:  10.3969/j.issn.1001-7313.2004.02.005
    [22]
    范磊, 孙守勋, 王也英, 等.全谱反演技术在山基掩星数据处理中的应用.应用气象学报, 2012, 23(4):493-499. doi:  10.3969/j.issn.1001-7313.2012.04.013
    [23]
    Wickert J.Comparison of vertical refractivity and temperature profile from CHAMP with radiosonde measurements.Denmark:Danish Meteorological Institute, 2005, 6:21.
    [24]
    Kuo Y H.Comparison of GPS radio occutation soundings with radiosondes.Geophys Res Lett, 2005, 32(5):3-6.
    [25]
    苟小平, 符养, 郭粤宁, 等.COSMIC计划及掩星数据误差分析.气象科学, 2009, 29(3):348-354. doi:  10.3969/j.issn.1009-0827.2009.03.011
    [26]
    Lorenc A C, Hammon O.Objective quality of observations using bayesian methods, theory, and a practical implantation.Q J Roy Meteor Soc, 1988, 114:515-543. doi:  10.1002/qj.49711448012
    [27]
    Gandin L S.Complex quality control of meteorological observations.Mon Wea Rev, 1988, 16:1137-1156.
    [28]
    Andersson E, Jarvinen H. Variational quality control.Q J Roy Meteor Soc, 1999, 125:697-722. doi:  10.1002/qj.49712555416
    [29]
    Gandin L S.Complex quality control of meteorological observations.Mon Wea Rev, 1988, 116(5):1137-1156. doi:  10.1175/1520-0493(1988)116<1137:CQCOMO>2.0.CO;2
    [30]
    Zou X, Zeng Zhen.A Quality control procedure for GPS radio occultation data.J Geophys Res, 2006, 111, D02112, DOI: 10.1029/2005-JD005846.
    [31]
    臧欣.卫星资料应用与质量控制.南京:南京信息工程大学, 2012.
    [32]
    李伟, 邢毅, 马舒庆.国产GTS1探空仪与VAISALA公司RS92探空仪对比分析.气象, 2009, 35(10):97-102. doi:  10.7519/j.issn.1000-0526.2009.10.012
    [33]
    李芳芳, 陈起英, 吴泓锟.基于秒级探空资料的中国地区浮力频率分布.应用气象学报, 2019, 30(5):629-640. doi:  10.11898/1001-7313.20190511
    [34]
    吴泓锟, 陈起英, 华维, 等.基于秒级探空资料分析四川重力波统计特征.应用气象学报, 2019, 30(4):491-501. doi:  10.11898/1001-7313.20190409
    [35]
    赵定池, 潘晓滨, 晋鹏, 等.COSMIC后期的掩星折射率资料误差特性分析.气象环境与科学, 2016, 39(4):30-37. http://d.old.wanfangdata.com.cn/Periodical/hnqx201604005
    [36]
    Lanzante J R.Resistant, robust and non-parametric techniques for the analysis of climate data:Theory and examples, including applications to historical radiosonde station data.Int J Climatol, 1996, 16:1197-1226. doi:  10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L
    [37]
    张大任, 郑静, 范军良, 等.近60年中国不同气候区极端事件的时空变化特征.中国农业气象, 2019, 40(7):422-434. doi:  10.3969/j.issn.1000-6362.2019.07.002
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(1)

    Article views (4802) PDF downloads(86) Cited by()
    • Received : 2019-07-01
    • Accepted : 2019-09-26
    • Published : 2020-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint