Ke Huabing, Gong Sunling, He Jianjun, et al. Assessment of open biomass burning impacts on surface PM2.5 concentration. J Appl Meteor Sci, 2020, 31(1): 105-116. DOI:  10.11898/1001-7313.20200110.
Citation: Ke Huabing, Gong Sunling, He Jianjun, et al. Assessment of open biomass burning impacts on surface PM2.5 concentration. J Appl Meteor Sci, 2020, 31(1): 105-116. DOI:  10.11898/1001-7313.20200110.

Assessment of Open Biomass Burning Impacts on Surface PM2.5 Concentration

DOI: 10.11898/1001-7313.20200110
  • Received Date: 2019-03-05
  • Rev Recd Date: 2019-12-27
  • Publish Date: 2020-01-31
  • Open biomass burning plays an important role in the formation of heavy pollution events during harvest seasons in China by releasing gases and particulate matters into the atmosphere. A better understanding of open biomass burning in China is required to assess its impacts on the air quality and especially on heavy haze pollution.By using datasets of MODIS fire spot, land cover, vegetation cover, biomass loading and emission factors, a biomass emission model is developed, which is then embedded to an air quality model (WRF-CUACE) to quantitatively assess impacts of biomass burning on surface PM2.5 concentration in China through sensitivity tests. Three simulation scenarios are designed to ensure that simulation results of revised scenarios are closer to actual atmospheric conditions according to the model evaluation. Results show that in October 2014, Northeast, South and Southwest China are regions of the largest contribution to biomass burning with the average monthly increased concentration of PM2.5 up to 30-60 μg·m-3, and even more than 100 μg·m-3 at local regions. In North, East and South China, biomass burning generally provides a contribution of PM2.5 concentration of 5-20 μg·m-3. In terms of the percentage of relative contribution, the value in Northeast China exceeds 50% in most regions. In South China, the relative contribution of biomass burning reaches 20%-50%, and even exceeds 60% in parts of Southwest China. While in North, Central and East China, the relative contribution of biomass burning is generally 10%-20%. In addition, the contribution of secondary aerosols in PM2.5 from biomass burning is also estimated. A group of sensitivity experiments are set up, with and without the gas emission from biomass burning. In Northeast China, the contribution concentration of secondary aerosols is only 0-10 μg·m-3, significantly lower than that in North, Central, East and South China, where the contribution concentration of secondary aerosols could reach 5-15 μg·m-3. In terms of the percentage of contribution to secondary aerosols in PM2.5 from biomass burning, the value in Northeast China is the lowest, which is less than 30% in most regions. And in South and Southwest China, the contribution percentage is relatively larger, which can reach 30%-50%. While in North, Central, East China and vast remote areas, the contribution percentage almost exceed 70%. Based on the above analysis, it is found that the percentage of secondary aerosols in PM2.5 from biomass burning drops when the biomass burning grows.
  • Fig. 1  Vertical distribution of biomass burning emissions from vegetation type of forest

    Fig. 2  Model domain (the second one) and location of observation stations

    Fig. 3  The observed and simulated daily mean surface PM2.5 concentration of three scenarios at 10 stations during 1-31 Oct 2014

    Fig. 4  Distributions of averaged surface PM2.5 concentration and contribution from biomass burning in Oct 2014

    (a)simulated PM2.5 concentration from SIM1, (b)simulated PM2.5 concentration from SIM3, (c)contribtution from biomass burning, (d)percentage of contribtution from biomass burning

    Fig. 5  Contribution(a) and percentage of contribution(b) of secondary aerosols in PM2.5 from biomass burning

    Table  1  Biomass loadings and emission factors for different land cover types

    植被类型 木质类燃料载荷/
    (kg·m-2)
    草本类燃料载荷/
    (kg·m-2)
    CO/(g·kg-1) PM2.5/(g·kg-1) OC/(g·kg-1) BC/(g·kg-1)
    常绿针叶林 28.61 4.79 118 13.0 7.8 0.20
    常绿阔叶林 19.45 5.17 92 9.7 4.7 0.52
    落叶针叶林 15.46 5.48 118 13.0 7.8 0.20
    落叶阔叶林 19.50 4.73 102 13.0 9.2 0.56
    混交林 19.98 7.93 102 13.0 9.2 0.56
    稠密灌丛 4.80 1.24 68 9.3 6.6 0.50
    稀疏灌丛 2.63 0.82 68 9.3 6.6 0.50
    木本稀树草原 12.51 3.07 68 9.3 6.6 0.50
    稀树草原 10.51 2.89 59 5.4 2.6 0.37
    草地 2.62 1.40 59 5.4 2.6 0.37
    永久湿地 8.34 10.14 59 5.4 2.6 0.37
    农田 0 0.66 111 5.8 3.3 0.69
    农田/自然植被混合 8.87 2.97 59 5.4 2.6 0.37
    贫瘠或稀疏植被 1.18 0.48 59 5.4 2.6 0.37
    DownLoad: Download CSV

    Table  2  Statistics of observed and simulated meteorological elements

    站点 要素 观测值 模拟值 平均偏差 均方根误差 相关系数
    北京 气温/℃ 14.1 13.8 -0.3 2.1 0.90
    相对湿度/% 64.0 56.8 -7.2 14.4 0.87
    风速/(m·s-1) 1.7 1.9 0.2 0.9 0.70
    济南 气温/℃ 17.1 17.9 0.7 1.6 0.94
    相对湿度/% 56.9 48.2 -8.8 12.2 0.92
    风速/(m·s-1) 2.8 2.9 0.1 1.2 0.70
    石家庄 气温/℃ 15.4 15.8 0.5 2.8 0.82
    相对湿度/% 68.9 52.2 -16.7 22.8 0.70
    风速/(m·s-1) 0.9 2.0 1.0 1.5 0.38
    合肥 气温/℃ 19.1 20.4 1.3 1.8 0.94
    相对湿度/% 73.6 57.5 -16.1 19.0 0.82
    风速/(m·s-1) 1.8 2.4 0.6 1.0 0.70
    南京 气温/℃ 19.0 19.8 0.8 1.2 0.97
    相对湿度/% 72.9 60.5 -12.4 14.7 0.90
    风速/(m·s-1) 2.4 2.3 -0.1 0.9 0.80
    上海 气温/℃ 20.2 20.7 0.5 1.1 0.95
    相对湿度/% 68.3 64.3 -4.0 8.2 0.88
    风速/(m·s-1) 2.6 3.2 0.6 1.2 0.79
    郑州 气温/℃ 17.8 19.2 1.3 2.0 0.92
    相对湿度/% 64.8 47.4 -17.4 20.7 0.85
    风速/(m·s-1) 1.7 2.5 0.8 1.3 0.63
    沈阳 气温/℃ 10.9 10.5 -0.4 2.3 0.94
    相对湿度/% 55.7 59.8 4.0 14.0 0.83
    风速/(m·s-1) 2.4 3.4 1.0 1.7 0.67
    长春 气温/℃ 8.6 9.2 0.6 1.9 0.96
    相对湿度/% 52.3 46.3 -6.0 14.8 0.77
    风速/(m·s-1) 2.8 3.3 0.4 1.2 0.84
    哈尔滨 气温/℃ 6.4 5.4 -0.9 2.1 0.95
    相对湿度/% 55.3 52.8 -2.5 14.3 0.79
    风速/(m·s-1) 2.7 3.4 0.7 1.4 0.81
    DownLoad: Download CSV

    Table  3  Statistics of PM2.5 between observation and simulation from SIM1

    站点 平均值/(μg·m-3) 相关系数 平均偏差/
    (μg·m-3)
    均方根误差/
    (μg·m-3)
    平均相对偏差/% 平均相对误差/%
    观测 模拟
    北京 116.1 81.6 0.84 -34.5 59.3 -31.8 35.1
    济南 71.6 53.4 0.46 -18.3 33.8 -27.4 37.7
    石家庄 161.2 83.3 0.77 -77.8 104.8 -56.4 56.5
    合肥 78.0 63.0 0.53 -15.0 35.0 -17.7 32.2
    南京 69.7 52.8 0.79 -16.9 25.1 -26.5 31.2
    上海 51.8 41.5 0.66 -19.9 21.9 -24.6 40.2
    郑州 113.9 68.6 0.75 -45.4 53.8 -49.2 49.2
    沈阳 88.1 63.1 0.66 -25.0 70.7 -14.3 40.4
    长春 155.4 51.4 0.62 -104.0 135.5 -85.7 85.8
    哈尔滨 147.6 33.7 0.55 -113.9 188.4 -83.0 83.0
    DownLoad: Download CSV

    Table  4  Statistics of PM2.5 between observation and simulation from SIM2

    站点 平均值/(μg·m-3) 相关系数 平均偏差/
    (μg·m-3)
    均方根误差/
    (μg·m-3)
    平均相对偏差/% 平均相对误差/%
    观测 模拟
    北京 116.1 86.6 0.84 -29.4 55.3 -28.0 32.8
    济南 71.6 55.4 0.45 -16.2 33.4 -24.0 37.1
    石家庄 161.2 87.5 0.76 -73.7 101.6 -52.7 54.6
    合肥 78.0 64.8 0.55 -13.2 33.9 -15.1 30.7
    南京 69.7 55.4 0.84 -14.3 21.6 -22.7 27.9
    上海 51.8 42.6 0.69 -17.8 20.7 -22.3 38.5
    郑州 113.9 70.3 0.75 -38.3 52.4 -46.8 46.8
    沈阳 88.1 69.5 0.69 -21.1 67.0 -5.1 36.8
    长春 155.4 58.5 0.77 -97.0 126.9 -77.0 77.1
    哈尔滨 147.6 39.5 0.73 -108.1 179.6 -76.2 76.3
    DownLoad: Download CSV

    Table  5  Statistics of PM2.5 between observation and simulation from SIM3

    站点 平均值/(μg·m-3) 相关系数 平均偏差/
    (μg·m-3)
    均方根误差/
    (μg·m-3)
    平均相对偏差/% 平均相对误差/%
    观测 模拟
    北京 116.1 97.9 0.85 -18.2 48.3 -17.9 28.7
    济南 71.6 60.5 0.41 -11.1 32.8 -15.9 36.7
    石家庄 161.2 95.8 0.76 -65.4 94.0 -45.2 48.4
    合肥 78.0 72.3 0.64 -5.7 29.2 -5.4 27.4
    南京 69.7 61.3 0.85 -8.4 17.8 -13.8 22.8
    上海 51.8 46.6 0.74 -5.2 18.6 -14.0 34.5
    郑州 113.9 78.1 0.71 -35.8 47.4 -37.2 38.6
    沈阳 88.1 93.4 0.57 5.3 67.5 21.3 40.1
    长春 155.4 91.2 0.73 -64.2 96.2 -43.0 47.9
    哈尔滨 147.6 71.1 0.79 -76.5 134.9 -45.8 50.7
    DownLoad: Download CSV
  • [1]
    Dennis A, Fraser M, Anderson S, et al.Air pollutant emissions associated with forest, grassland, and agricultural burning in Texas.Atmos Environ, 2002, 36(23):3779-3792. doi:  10.1016/S1352-2310(02)00219-4
    [2]
    杨占婷, 白永清, 陈英英, 等.鄂中东部两次秸秆焚烧引发的严重灰霾天气分析.气象科技, 2013, 41(6):1147-1152. doi:  10.3969/j.issn.1671-6345.2013.06.032
    [3]
    郑晓燕, 刘咸德, 赵峰华, 等.北京市大气颗粒物中生物质燃烧排放贡献的季节特征.中国科学(B辑), 2005, 35(4):346-352. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cb200504014
    [4]
    李令军, 王英, 张强, 等.麦秸焚烧对北京市空气质量影响探讨.中国科学(D辑), 2008, 38(2):232-242. doi:  10.3321/j.issn:1006-9267.2008.02.009
    [5]
    Pope C A, Dockery D W.Health effects of fine particulate air pollution:Lines that connect.Journal of the Air & Waste Management Association, 2012, 56(6):709-742. doi:  10.1080-10473289.2006.10464485/
    [6]
    Li M, Wang T, Xie M, et al.Agricultural fire impacts on ozone photochemistry over the Yangtze River Delta Region, East China.J Geophys Res Atmos, 2018, 123(12):6605-6623. doi:  10.1029/2018JD028582
    [7]
    Wiedinmyer C, Neff J C.Estimates of CO2 from fires in the United States:Implications for carbon management.Carbon Balance Manag, 2007, 2(1):1-12. doi:  10.1186/1750-0680-2-1
    [8]
    Field R D, van der Werf G R, Fanin T, et al.Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Nino-induced drought.Proc Natl Acad Sci U S A, 2016, 113(33):9204-9209. doi:  10.1073/pnas.1524888113
    [9]
    van der Werf G R, Randerson J T, Giglio L, et al.Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009).Atmos Chem Phys, 2010, 10(23):11707-11735. doi:  10.5194/acp-10-11707-2010
    [10]
    Kaiser J W, Heil A, Andreae M O, et al.Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power.Biogeosciences, 2012, 9(1):527-554. doi:  10.5194/bg-9-527-2012
    [11]
    Wiedinmyer C, Akagi S K, Yokelson R J, et al.The Fire INventory from NCAR (FINN):A high resolution global model to estimate the emissions from open burning.Geoscientific Model Development, 2011, 4(3):625-641. doi:  10.5194/gmd-4-625-2011
    [12]
    Mieville A, Granier C, Liousse C, et al.Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction.Atmos Environ, 2010, 44(11):1469-1477. doi:  10.1016/j.atmosenv.2010.01.011
    [13]
    Shi Y, Yamaguchi Y.A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001-2010.Atmos Environ, 2014, 98:8-16. doi:  10.1016/j.atmosenv.2014.08.050
    [14]
    Huang X, Li M, Li J, et al.A high-resolution emission inventory of crop burning in fields in China based on MODIS thermal anomalies/fire products.Atmos Environ, 2012, 50:9-15. doi:  10.1016/j.atmosenv.2012.01.017
    [15]
    Liu M, Song Y, Yao H, et al.Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power.Atmos Environ, 2015, 112:326-334. doi:  10.1016/j.atmosenv.2015.04.058
    [16]
    程兴宏, 徐祥德, 陈尊裕, 等.北京地区PM10浓度空间分布特征的综合变分分析.应用气象学报, 2007, 18(2):165-172. doi:  10.3969/j.issn.1001-7313.2007.02.005
    [17]
    徐敬, 丁国安, 颜鹏, 等.北京地区PM2.5的成分特征及来源分析.应用气象学报, 2007, 18(5):645-654. doi:  10.3969/j.issn.1001-7313.2007.05.009
    [18]
    颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi:  10.3969/j.issn.1001-7313.2010.03.001
    [19]
    张小曳, 张养梅, 曹国良.北京PM1中的化学组成及其控制对策思考.应用气象学报, 2012, 23(3):257-264. doi:  10.3969/j.issn.1001-7313.2012.03.001
    [20]
    靳军莉, 颜鹏, 马志强, 等.北京及周边地区2013年1-3月PM2.5变化特征.应用气象学报, 2014, 25(6):690-700. http://qikan.camscma.cn/jamsweb/article/id/20140605
    [21]
    徐敬, 马志强, 赵秀娟, 等.边界层方案对华北低层O3垂直分布模拟的影响.应用气象学报, 2015, 26(5):567-577. doi:  10.11898/1001-7313.20150506
    [22]
    徐敬, 张小玲, 蔡旭晖, 等.基于敏感源分析的动态大气污染排放方案模拟.应用气象学报, 2016, 27(6):654-665. doi:  10.11898/1001-7313.20160602
    [23]
    徐晓斌.我国霾和光化学污染观测研究进展.应用气象学报, 2016, 27(5):604-619. doi:  10.11898/1001-7313.20160509
    [24]
    Zhang H F, Ye X N, Cheng T T, et al.A laboratory study of agricultural crop residue combustion in China:Emission factors and emission inventory.Atmos Environ, 2008, 42(36):8432-8441. doi:  10.1016/j.atmosenv.2008.08.015
    [25]
    Zhou Y, Han Z, Liu R, et al.A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event.Aerosol and Air Quality Research, 2018, 18:1558-1572. doi:  10.4209/aaqr.2017.09.0334
    [26]
    Cheng Z, Wang S, Fu X, et al.Impact of biomass burning on haze pollution in the Yangtze River delta, China:A case study in summer 2011.Atmos Chem Phys, 2014, 14(9):4573-4585. doi:  10.5194/acp-14-4573-2014
    [27]
    Li X, Xia X, Song J, et al.A case study of long-range transport of smoke aerosols Eastern Siberia to Northeast China in July 2014.Aerosol and Air Quality Research, 2017, 17(4):965-974. doi:  10.4209/aaqr.2016.04.0166
    [28]
    Wang Q, Shao M, Liu Y, et al.Impact of biomass burning on urban air quality estimated by organic tracers:Guangzhou and Beijing as cases.Atmos Environ, 2007, 41(37):8380-8390. doi:  10.1016/j.atmosenv.2007.06.048
    [29]
    Hansen M C, Townshend J R G, Defries R S, et al.Estimation of tree cover using MODIS data at global, continental and regional/local scales.Int J Remote Sens, 2005, 26(19):4359-4380. doi:  10.1080/01431160500113435
    [30]
    Wiedinmyer C, Quayle B, Geron C, et al.Estimating emissions from fires in North America for air quality modeling.Atmos Environ, 2006, 40(19):3419-3432. doi:  10.1016/j.atmosenv.2006.02.010
    [31]
    Ito A, Penner J E.Global estimates of biomass burning emissions based on satellite imagery for the year 2000.J Geophys Res Atmos, 2004, 109(D14), DOI: 10.1029/2003JD004423.
    [32]
    Lavoué D, Liousse C, Cachier H, et al.Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes.J Geophys Res Atmos, 2000, 105(D22):26871-26890. doi:  10.1029/2000JD900180
    [33]
    Colarco P R, Schoeberl M R, Doddridge B G, et al.Transport of smoke from Canadian forest fires to the surface near Washington, D C:Injection height, entrainment, and optical properties.J Geophys Res Atmos, 2004, 109(D6), DOI: 10.1029/2003jd004248.
    [34]
    Debell L J, Talbot R W, Dibb J E, et al.A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada.J Geophys Res Atmos, 2004, 109(D19), DOI: 10.1029/2004JD004840.
    [35]
    Gong S L, Zhang X Y.CUACE/Dust-An integrated system of observation and modeling systems for operational dust forecasting in Asia.Atmos Chem Phys, 2008, 8(9):2333-2340. doi:  10.5194/acp-8-2333-2008
    [36]
    Gong S L, Barrie L A, Blanchet J P, et al.Canadian Aerosol Module:A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1.Module development.J Geophys Res Atmos, 2003, 108(D1), DOI: 10.1029/2001jd002002.
    [37]
    West J J, Pilinis C, Nenes A, et al.Marginal direct climate forcing by atmospheric aerosols.Atmos Environ, 1998, 32(14):2531-2542. https://www.sciencedirect.com/science/article/abs/pii/S135223109800003X
    [38]
    何建军, 余晔, 刘娜, 等.复杂地形区陆面资料对WRF模式模拟性能的影响.大气科学, 2014, 38(3):484-498. http://d.old.wanfangdata.com.cn/Periodical/daqikx201403007
    [39]
    Morris R E, Mcnally D E, Tesche T W, et al.Preliminary evaluation of the community multiscale air quality model for 2002 over the Southeastern United States.Journal of the Air & Waste Management Association, 2005, 55(11):1694-1708. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16350367
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(5)

    Article views (4893) PDF downloads(77) Cited by()
    • Received : 2019-03-05
    • Accepted : 2019-12-27
    • Published : 2020-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint