Yan Xu, Zhang Yijun, Du Sai, et al. Ground potential rise and transient response of the grounding grid based on the triggered lightning. J Appl Meteor Sci, 2020, 31(2): 247-256. DOI:  10.11898/1001-7313.20200211.
Citation: Yan Xu, Zhang Yijun, Du Sai, et al. Ground potential rise and transient response of the grounding grid based on the triggered lightning. J Appl Meteor Sci, 2020, 31(2): 247-256. DOI:  10.11898/1001-7313.20200211.

Ground Potential Rise and Transient Response of the Grounding Grid Based on the Triggered Lightning

DOI: 10.11898/1001-7313.20200211
  • Received Date: 2019-10-08
  • Rev Recd Date: 2019-12-25
  • Publish Date: 2020-03-31
  • It is extremely dangerous of ground grid potentials which significantly rise when the lightning currents are flowing through the grid. A statistical analysis on 39 return-strokes, 10 M-components and the ground potential rise (GPR) caused by them based on 7 triggered lightnings is carried out. According to the analysis, the geometric mean (GM) of the current peak values of 39 return-strokes is -12.78 kA, and the corresponding GM of GPR reaches -138.97 kV; the GM of the current peak values of the M-components is -0.60 kA, while the corresponding GM of GPR is -7.18 kV. There are distinct sub-peaks in the waveform of the GPR caused by the return-strokes, and the GM of the sub-peaks falls to -90.09 kV within several microseconds, about 64.86% of peak values. During the return stroke stage, the linear correlation coefficient of GPR voltages and the direct lightning current is 0.94, and the linear correlation coefficient of GPR voltages and the gradient is 0.55. It indicates that the GPR in return stroke stage is mainly caused by lightning current discharge in soil and the inductive coupling is relatively weaker. During the M-component stage, the correlation coefficient of peak value of GPR voltages and direct lightning current reaches 0.99, which means the GPR during M-component stage is mostly caused by lightning current discharge in soil. The impulse grounding resistance in the stage of return stroke when lightning current dispersing through grounding grids is 10.87 Ω, and it is 12.02 Ω in the stage of M-component. Both of the impulse grounding resistances are smaller than the DC grounding resistance, and the difference reaches 1.1 times. The minimum half-peak width of the GPR caused by the return-strokes is 0.44 μs, of which the GM is 1.93 μs, only 25.8% of the half-peak width of the corresponding current return-stroke. And the half-peak width of the GPR caused by M-components can be up to 2 microseconds, about 124 times of the GM of the half-peak width of the return-strokes, keeping the surge protective devices (SPD) running long which easily leads to crashing damages.
  • Fig. 1  The schematic of experimental layout

    Fig. 2  The current waveform of triggered lighting T0611

    (a)the current waveform of triggered lighting T0611, (b)the initial long continuous current of T0611, (c)M-components of T0611, (d)the return stroke of T0611

    Fig. 3  Triggered lightning current and the corresponding GPR at grounding grid of return strokes RS1-RS8

    Fig. 4  Proportional fittings of GPR with return strokes(a), gradient(b) and M-components(c)

    Table  1  Parameters of triggered lightning current

    特征参量 统计量 回击 M分量
    最小值 -5.61 -0.37
    雷电流峰值Ipeak/kA 最大值 -36.44 -1.77
    几何平均值 -12.78 -0.60
    最小值 0.14 67.70
    10%~90%上升时间t/μs 最大值 0.56 1946.29
    几何平均值 0.27 330.09
    最小值 2.56 106.00
    半峰宽度tHPW/μs 最大值 29.27 1141.78
    几何平均值 7.48 343.11
    最小值 16.40
    上升时间10%~90%之间的平均陡度G1/(kA·μs-1) 最大值 104.20
    几何平均值 38.46
    DownLoad: Download CSV

    Table  2  Parameters of GPR by triggered lightning current

    特征参量 统计量 回击引起的地电位抬升电压波形特征 M分量引起的地电位抬升电压波形特征
    最小值 -52.49 -4.28
    地电位抬升电压峰值Vpeak/kV 最大值 -321.05 -18.46
    几何平均值 -138.97 -7.18
    最小值 0.22 80.96
    10%~90%上升时间T/μs 最大值 0.73 2006.64
    几何平均值 0.29 403.99
    最小值 0.44 72.44
    半峰宽度THPW/μs 最大值 11.34 2031.49
    几何平均值 1.93 239.53
    最小值 125.17
    上升时间10%~90%之间的平均陡度G2/(kA·μs-1) 最大值 883.58
    几何平均值 379.22
    DownLoad: Download CSV
  • [1]
    高燚, 张义军, 张文娟, 等.我国雷击致人伤亡特征及易损度评估区划.应用气象学报, 2012, 23(3):294-303. doi:  10.3969/j.issn.1001-7313.2012.03.005
    [2]
    He J L, Zeng R, Tu Y, et al.Laboratory investigation of impulse characteristics of trans-mission tower grounding devices.IEEE Transactions on Power Delivery, 2003, 18(3):994-1001. doi:  10.1109/TPWRD.2003.813802
    [3]
    钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi:  10.11898/1001-7313.20160608
    [4]
    徐良韬, 陈双, 姚雯, 等.利用起放电模式开展闪电活动的直接预报试验.应用气象学报, 2018, 29(5):534-545. doi:  10.11898/1001-7313.20180503
    [5]
    张义军, 张阳.雷暴闪电放电活动对电离层影响的研究进展.应用气象学报, 2016, 27(5):570-576. doi:  10.11898/1001-7313.20160506
    [6]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jamsweb/article/id/20140501
    [7]
    Schoene J, Uman M A, Rakov V A, et al.Lightning currents flowing in the soil and entering a test power distribution line via its grounding.IEEE Transactions on Power Delivery, 2009, 24(3):1095-1103. doi:  10.1109/TPWRD.2009.2014031
    [8]
    Chen S D, Zhang Y J, Chen C, et al.Influence of the ground potential rise on the residual voltage of low-voltage surge protective devices due to nearby lightning flashes.IEEE Transactions on Power Delivery, 2016, 31(2):596-604. doi:  10.1109/TPWRD.2015.2441773
    [9]
    颜旭, 张义军, 陈绍东, 等.1次人工触发闪电引起的临近地网电位升高及其特征分析.高电压技术, 2017(5):256-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201705034
    [10]
    朱良, 陈绍东, 颜旭, 等.基于触发闪电的共用地网雷电流分布观测及分析.高电压技术, 2018(5):1715-1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201805042
    [11]
    张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电.应用气象学报, 2012, 23(5):513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [12]
    张义军, 吕伟涛, 陈绍东, 等.广东野外雷电综合观测试验十年进展.气象学报, 2016, 74(5):655-671. http://d.old.wanfangdata.com.cn/Periodical/qxxb201605001
    [13]
    Yang J, Qie X, Zhang G, et al.Characteristics of channel base currents and close magnetic fields in triggered flashes in SHATLE.J Geophys Res, 2010, 115(D23):D23102. doi:  10.1029/2010JD014420
    [14]
    Schoene J, Uman M A, Rakov V A, et al.Characterization of return-stroke currents in rocket-triggered lightning.J Geophys Res Atmos, 2009, 114, D03106, DOI: 10.1029/2008JD009873.
    [15]
    Malan D J, Collens H.Progressive lightning.Ⅲ.The fine structure of return lightning strokes.Proceedings of the Royal Society of London A Mathematical Physical & Engineering Sciences, 1937, 162(909):175-203.
    [16]
    Jiang R, Qie X, Yang J, et al.Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism.Radio Science, 2013, 48(5):597-606. doi:  10.1002/rds.20065
    [17]
    Thottappillil R, Goldberg J D, Rakov V A, et al.Properties of M components from currents measured at triggered lightning channel base.J Geophys Res Atmos, 1995, 100(D12):25711-25720. doi:  10.1029/95JD02734
    [18]
    蒋如斌, 郄秀书, 王彩霞, 等.峰值电流达几千安量级的闪电分量放电特征及机理探讨.物理学报, 2011, 60(7):867-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201107129
    [19]
    Thottappillil R, Rakov V A, Uman M A, et al.Lightning subsequent-stroke electric field peak greater than the first stroke peak and multiple ground terminations.J Geophys Res, 1992, 97(D7):7503. doi:  10.1029/92JD00557
    [20]
    Liu Y, Theethayi N, Thottappillil R.An engineering model for transient analysis of grounding system under lightning strikes:Nonuniform transmission-line approach.IEEE Transactions on Power Delivery, 2005, 20(2):722-730. doi:  10.1109/TPWRD.2004.843437
    [21]
    谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):451-459. doi:  10.11898/1001-7313.20150407
    [22]
    周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.3969/j.issn.1001-7313.2014.03.010
    [23]
    肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.3969/j.issn.1001-7313.2013.04.007
    [24]
    Haddad A.Characterisation of ionization phenomena in soils under fast impulses.IEEE Transactions on Power Delivery, 2005, 21(1):353-361.
    [25]
    Silverio V, Rafael A, Clever P, et al.Lightning response of groun- ding grids:Simulated and experimental results.IEEE Transactions on Electromagnetic Compatibility, 2015, 57(1):121-127. doi:  10.1109/TEMC.2014.2362091
    [26]
    Zeng Rong, Gong Xuehai, He Jinliang, et al.Lightning impulse performances of grounding grids for substations considering soil ionization.IEEE Transactions on Power Delivery, 2008, 23(2):667-675. doi:  10.1109/TPWRD.2007.915194
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(2)

    Article views (3737) PDF downloads(49) Cited by()
    • Received : 2019-10-08
    • Accepted : 2019-12-25
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint