Wang Peijuan, Ma Yuping, Huo Zhiguo, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. DOI:  10.11898/1001-7313.20200302.
Citation: Wang Peijuan, Ma Yuping, Huo Zhiguo, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. DOI:  10.11898/1001-7313.20200302.

Construction of the Model for Soil Moisture Effects on Leaf Photosynthesis Rate of Winter Wheat

DOI: 10.11898/1001-7313.20200302
  • Received Date: 2019-10-12
  • Rev Recd Date: 2019-12-24
  • Publish Date: 2020-05-31
  • The rate of leaf photosynthesis, which is sensitive to soil moisture, is one of the most important parameters to characterize the photosynthetic capacity of plants. Constructing a model which can reveal effects of soil moisture on leaf photosynthesis rate of winter wheat will be helpful to accurately understand the photosynthesis and yield formation. A total of 310 photosynthesis rate samples under different soil moistures, including 227 drought stress samples in 50 tests and 83 waterlogging stress samples in 14 tests, are jointly collected from 17 winter wheat cultivars at 11 experimental sites via the published references. However, photosynthesis rates of winter wheat are quite different between different cultivars, different developmental stages, and different experimental sites. Normalized photosynthesis rate coefficients for winter wheat are derived by calculating the ratio of leaf photosynthesis rate under different water stresses and CK. And then, segmental and exponential models are established for effects of drought and waterlogging stresses on leaf photosynthesis rate of winter wheat, respectively. The model for soil moisture effects on leaf photosynthesis rate of winter wheat (SMEP) is correspondingly constructed. Photosynthesis rate coefficients of winter wheat leaves show the trend of "stable low value-linear increase-stable high value-slow decrease" with the increase of soil relative moisture. Meanwhile, photosynthesis rate coefficients exhibit characteristics of "slow decline-rapid decline" with the prolongation of waterlogging stress. Four tests, including back-training test, extrapolation test, single-site test and certain developmental stage test, are also done to validate the SMEP model. Generally, the results simulated by the SMEP model are in good agreement with the records in the literatures. The linear regression coefficients are all around 1.0, and the regression equations all pass the significant test of 0.01. SMEP model will be coupled to Chinese Agro-Meteorological Model (CAMM1.0), providing scientific and technological supports for the continuous improvement of CAMM1.0.
  • Fig. 1  Site distribution for water stress experiments reported in references

    Fig. 2  Schematic diagram of soil relative moisture effects on leaf photosynthesis rate of winter wheat

    Fig. 3  Effects of drought stresses on leaf photosynthesis rate of winter wheat

    (a)dynamics of photosynthesis rate coefficients with soil relative moisture,
    (b)comparisons of photosynthesis rate coefficients between records from references and SMEP simulations

    Fig. 4  Effect of waterlogging duration on leaf photosynthesis rate of winter wheat

    (a)dynamics of photosynthesis rate coefficients with waterlogging durations,
    (b)comparisons of photosynthesis rate coefficients between records from references and SMEP simulations

    Fig. 5  Validations of photosynthesis rate coefficients for winter wheat leaves under waterlogging stresses with wet damage in Reference [26]

    (a)before booting stage, (b)after booting stage

    Fig. 6  Independent validations of photosynthesis rate coefficients of winter wheat leaves under drought stresses

    (a)dynamics of photosynthesis rate coefficients with soil relative moisture,
    (b)comparisons of photosynthesis rate coefficients between records from references and SMEP simulations

    Fig. 7  Independent validations of photosynthesis rate coefficients for winter wheat leaves under waterlogging stresses

    (a)dynamics of photosynthesis rate coefficients with waterlogging duration,
    (b)comparisons of photosynthesis rate coefficients between records from references and SMEP simulations

    Fig. 8  Single-site validations of photosynthesis rate coefficients for winter wheat leaves under drought and waterlogging stresses (a)drought stress at Luancheng, (b)drought stress at Xinxiang, (c)waterlogging stress at Hefei

    Fig. 9  Dynamics of photosynthesis rate coefficients for winter wheat leaves with soil relative moisture at jointing(a) and booting(b) stages

    Table  1  Summary of photosynthesis rate for winter wheat flag leaves under different water stresses reported in references

    胁迫试验 试验品种 试验地点 省份 组数 样本量 发育阶段 光强/(μmol·m-2·s-1) 文献
    新冬2 阜康 新疆 1 5 灌浆期 1400 [28]
    高优503 栾城 山东 5 25 拔节-蜡熟期 [29]
    高优503 栾城 山东 8 39 拔节-灌浆期 [30]
    小偃22 杨凌 陕西 1 4 三叶期 [31]
    京麦9428 大兴 北京 1 2 灌浆期 饱和光强 [32]
    扬麦9 南京 江苏 4 12 灌浆期 [33]
    周麦27 鹤壁 河南 3 9 灌浆期 [34]
    干旱 山农20 泰安 山东 1 4 灌浆期 [35]
    山农21 泰安 山东 1 4 灌浆期 [35]
    扬麦10 南京 江苏 5 43 起身-灌浆期 1000±20 [18]
    鲁麦7 莱阳 山东 7 27 孕穗-灌浆期 [36]
    郑麦98 新乡 河南 3 15 拔节期 [37]
    长武 陕西 9 27 [38]
    鲁麦23 泰安 山东 1 11* 拔节期 饱和光强 [20]
    烟农19 合肥 安徽 4 28 开花-灌浆期 [25]
    汶农17 南京 江苏 1 3 开花-灌浆期 [39]
    扬麦16 南京 江苏 1 3 开花-灌浆期 [39]
    渍水 豫麦34 南京 江苏 1 2 开花-灌浆期 1100 [24]
    扬麦9 南京 江苏 1 2 开花-灌浆期 1100 [24]
    扬麦13 南京 江苏 1 4 开花-灌浆期 1100 [40]
    扬麦10 南京 江苏 5 41* 起身-灌浆期 1000±20 [18]
      注:*表示建模数据,其余为验证数据;光强数值空缺表示测量条件是晴朗无云的09:00—11:00(北京时,下同)。
    DownLoad: Download CSV

    Table  2  Photosynthesis rate coefficients for winter wheat leaves between records from references and SMEP simulations

    站点 线性回归方程 决定系数 均方根误差 样本量
    栾城 y=1.3219x-0.3130 0.9791 0.005 5
    新乡 y=0.9922x+0.0182 0.9342 0.003 5
    合肥 y=0.9008x-0.0299 0.9078 0.018 7
      注:x为文献数据,y为SMEP模型模拟结果,且所有方程均达到0.01显著性水平。
    DownLoad: Download CSV

    Table  3  Photosynthesis rate coefficients for winter wheat leaves between records from references and SMEP simulations at jointing and booting stages

    发育期 线性回归方程 决定系数 均方根误差 样本量
    拔节期 y=1.0753x-0.0860 0.8372 0.0067 9
    灌浆期 y=0.9545x+0.0255 0.6106 0.0113 12
    DownLoad: Download CSV
  • [1]
    FAO, 2018.FAOSTAT Database.Rome:FAO, 2018.
    [2]
    吴霞, 王培娟, 陈鹏狮, 等.黄淮海平原冬小麦最大可能蒸散的估算.应用气象学报, 2017, 28(6):690-699. doi:  10.11898/1001-7313.20170605
    [3]
    中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社, 2017.
    [4]
    Wu Xia, Wang Peijuan, Huo Zhiguo, et al.Crop drought identification index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain, China.Agr Ecosys Environ, 2018, 263:18-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0daf47447b4d0d401c36af327a7b04a
    [5]
    房世波, 齐月, 韩国军, 等.1961-2010年中国主要麦区冬春气象干旱趋势及其可能影响.中国农业科学, 2014, 47(9):1754-1763. http://d.old.wanfangdata.com.cn/Periodical/zgnykx201409010
    [6]
    范雨娴, 霍治国, 杨宏毅, 等.湖南省油茶春季涝渍过程灾变判别指标.应用气象学报, 2018, 29(2):141-153. doi:  10.11898/1001-7313.20180202
    [7]
    张爱民, 马晓群, 杨太明, 等.安徽省旱涝灾害及其对农作物产量影响.应用气象学报, 2007, 18(5):619-626. http://qikan.camscma.cn/jamsweb/article/id/20070595
    [8]
    胡继超, 曹卫星, 罗卫红.渍水麦田土壤水分动态模型研究.应用气象学报, 2004, 15(1):41-50. http://qikan.camscma.cn/jamsweb/article/id/20040106
    [9]
    刘明, 齐华, 孙世贤, 等.水分胁迫对玉米光合特性的影响.玉米科学, 2008, 16(4):86-90. http://d.old.wanfangdata.com.cn/Periodical/hbnxb200605008
    [10]
    张树杰, 廖星, 胡小加, 等.渍水对油菜苗期生长及生理特性的影响.生态学报, 2013, 33(23):7382-7389. http://d.old.wanfangdata.com.cn/Periodical/stxb201323008
    [11]
    吴晓丽, 汤永禄, 李朝苏, 等.不同生育时期渍水对冬小麦旗叶叶绿素荧光及籽粒灌浆特性的影响.中国生态农业学报, 2015, 23(3):309-318. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201503007
    [12]
    高祺, 李明, 朴琳, 等.拔节期弱光和渍水胁迫对春玉米光合作用、根系生长及产量的影响.江苏农业科学, 2018, 34(6):1276-1286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnyxb201806011
    [13]
    Liu E K, Mei X R, Yan C R, et al.Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes.Agric Water Manage, 2016, 167:75-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3144f89d4f6e96291ca1037956fcbbbb
    [14]
    Zivcak M, Brestic M, Balatova Z, et al.Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress.Photosynth Res, 2013, DOI: 10.1007/s11120-013-9885-3.
    [15]
    Jia S, Lv J, Jiang S, et al.Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit.Photosynthetica, 2015, 53(1):95-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78a341888adcc7c103ddd4c3ba35f97e
    [16]
    陈晓远, 罗远培.土壤水分变动对冬小麦干物质分配及产量的影响.中国农业大学学报, 2001, 6(1):96-103. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb200101017
    [17]
    Dong Z Y, Zhang X D, Li J, et al.Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system:A path analysis.Agric For Meteorol, 2019, 272/273:12-19. http://cn.bing.com/academic/profile?id=16cdc13ee52bee09650951d95a188748&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    胡继超, 曹卫星, 姜东, 等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报, 2004, 30(4):315-320. http://d.old.wanfangdata.com.cn/Periodical/zuowxb200404004
    [19]
    胡梦芸, 张正斌, 徐萍, 等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究.作物学报, 2007, 33(10):1711-1719. http://d.old.wanfangdata.com.cn/Periodical/zuowxb200711024
    [20]
    刘建栋, 王馥棠, 于强, 等.华北地区冬小麦叶片光合作用模型在农业干旱预测中的应用研究.应用气象学报, 2003, 14(4):469-478. http://qikan.camscma.cn/jamsweb/article/id/20030458
    [21]
    胡继超, 曹卫星, 罗卫红, 等.小麦水分胁迫影响因子的定量研究Ⅱ.模型的建立与测试.作物学报, 2004, 30(5):460-464. http://d.old.wanfangdata.com.cn/Periodical/zuowxb200405010
    [22]
    谢祝捷, 姜东, 曹卫星, 等, 花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响.作物学报, 2004, 30(10):1047-1052. http://d.old.wanfangdata.com.cn/Periodical/zuowxb200410015
    [23]
    范雪梅, 姜东, 戴延波, 等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响.应用生态学报, 2005, 16(10):1883-1888. http://d.old.wanfangdata.com.cn/Periodical/yystxb200510017
    [24]
    谭维娜, 戴延波, 荆奇, 等.花后渍水对小麦旗叶光合特性及产量的影响.麦类作物学报, 2007, 27(2):314-317. http://d.old.wanfangdata.com.cn/Periodical/mlzwxb200702027
    [25]
    吴进东, 李金才, 魏凤珍, 等.花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响.作物学报, 2012, 38(6):1071-1079. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201206016
    [26]
    石春林, 金之庆.基于WCSODS的小麦渍害模型及其在灾害预警上的应用.应用气象学报, 2003, 14(4):462-468. http://qikan.camscma.cn/jamsweb/article/id/20030457
    [27]
    马玉平, 霍治国, 王培娟, 等.中国农业气象模式(CAMM1.0)构建与应用.应用气象学报, 2019, 30(5):528-542. doi:  10.11898/1001-7313.20190502
    [28]
    盛钰, 赵成义, 贾宏涛.水分胁迫对冬小麦光合及生物学特性的影响.水土保持学报, 2006, 20(1):193-196. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200601047
    [29]
    张秋英, 李发东, 高克昌, 等.水分胁迫对冬小麦光合特性及产量的影响.西北植物学报, 2005, 25(6):1184-1190. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb200506022
    [30]
    张秋英, 李发东, 刘孟雨.冬小麦叶片叶绿素含量及光合速率变化规律的研究.中国生态农业学报, 2005, 13(3):95-98. http://d.old.wanfangdata.com.cn/Periodical/stnyyj200503028
    [31]
    李思, 张莉, 姚雅琴.干旱对冬小麦叶片气孔、活性氧和光合作用的影响.河北大学学报(自然科学版), 2015, 35(5):487-493. http://d.old.wanfangdata.com.cn/Periodical/hebdxxb201505008
    [32]
    王博欣, 刘钰, 蔡甲冰, 等.不同供水条件对冬小麦光合特性及水分利用效率的影响.灌溉排水学报, 2012, 31(2):69-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps201202017
    [33]
    赵辉, 戴延波, 姜东, 等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响.应用生态学报, 2007, 18(2):333-338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200702017
    [34]
    李晶晶, 尹钧, 李武超, 等.不同水氮运筹对冬小麦光合特性和产量的影响.河南农业科学, 2017, 46(5):27-33. http://d.old.wanfangdata.com.cn/Periodical/hnnykx201705005
    [35]
    李传华, 李清林, 谭秀山, 等.不同土壤水分条件下小麦光合特性的研究.河北农业科学, 2013, 17(6):10-12;21. http://d.old.wanfangdata.com.cn/Periodical/hebnykx201306003
    [36]
    石岩, 林琪, 位东斌, 等.土壤水份胁迫对冬小麦光合及产量的影响.华北农学报, 1996, 11(4):80-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600201849
    [37]
    宋妮, 王景雷, 孙景生, 等.水分胁迫对盆栽冬小麦叶片生理生化的影响研究.中国农村水利水电, 2011(10):19-23. http://www.cnki.com.cn/Article/CJFDTotal-ZNSD201110006.htm
    [38]
    梁银丽, 康绍忠.节水灌溉对冬小麦光合速率和产量的影响.西北农业大学学报, 1998, 26(4):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800612929
    [39]
    吴晓静.花后酸雨和渍水胁迫对小麦生理特性及产量品质的影响.南京:南京农业大学, 2015.
    [40]
    李琪, 王清, 王连喜, 等.花后遮光渍水对南京冬小麦光合特性和产量的影响.江苏农业学报, 2017, 33(3):555-560. http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201703011
    [41]
    杨绍锷, 吴炳方, 闫娜娜.基于AMSR-E数据估测华北平原季东北地区土壤田间持水量.土壤通报, 2012, 43(2):301-305. http://www.cnki.com.cn/Article/CJFDTotal-TRTB201202007.htm
    [42]
    段兴武, 谢云, 冯艳杰, 等.东北黑土区土壤凋萎湿度研究.水土保持学报, 2008, 22(6):212-216. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200806045
    [43]
    全国科学技术名词审订委员会.土壤学名词.北京:科学出版社, 1998:33.
    [44]
    吴玮, 景元书, 马玉平, 等.干旱环境下夏玉米各生育时期光响应特征.应用气象学报, 2013, 24(6):723-730. http://qikan.camscma.cn/jamsweb/article/id/20130609
    [45]
    云文丽, 侯琼, 王海梅, 等.不同土壤水分对向日葵光合响应的影响.应用气象学报, 2014, 25(4):476-482. http://qikan.camscma.cn/jamsweb/article/id/20140411
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3315) PDF downloads(83) Cited by()
    • Received : 2019-10-12
    • Accepted : 2019-12-24
    • Published : 2020-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint