云的特征 | 时段 |
层状云 | 2016-06-04—05 |
层状云加对流云 | 2017-03-18—20 |
2017-04-12—13 | |
线状对流单体 | 2017-04-26—27 |
零散对流单体 | 2017-03-07—09 |
2017-03-25—26 | |
2017-03-29—30 | |
2017-05-07—08 | |
对流单体合并 | 2017-04-11—12 |
2017-04-19—20 | |
飑线 | 2017-05-04—05 |
2017-03-31—04-01 | |
2017-05-08—09 |
Citation: | Xu Shuyang, Wu Chong, Liu Liping. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. DOI: 10.11898/1001-7313.20200309. |
Fig 4. Hydrometeor variable feature and improvement of membership function(the shaded denotes the frequency)
(a)Zh-ρhv feature for biological scatterers, (b)σZh-σФDP feature for biological scatterers, (c)Zh-ρhv feature for ground clutter, including that due to anomalous propagation, (d)σZh-σФDP feature for ground clutter, including that due to anomalous propagation, (e)Zh-ZDR feature for crystals of various orientations(the orange line) and dry aggregated snow(the black line), (f)Zh-ρhv feature for crystals of various orientations and dry aggregated snow, (g)Zh-ZDR feature for a mixture of rain and hail, (h)Zh-KDR feature for a mixture of rain and hail
Table 1 Periods and characteristics of precipitation samples
云的特征 | 时段 |
层状云 | 2016-06-04—05 |
层状云加对流云 | 2017-03-18—20 |
2017-04-12—13 | |
线状对流单体 | 2017-04-26—27 |
零散对流单体 | 2017-03-07—09 |
2017-03-25—26 | |
2017-03-29—30 | |
2017-05-07—08 | |
对流单体合并 | 2017-04-11—12 |
2017-04-19—20 | |
飑线 | 2017-05-04—05 |
2017-03-31—04-01 | |
2017-05-08—09 |
Table 2 Distribution of A and proportion of ΔA ≤ 0.1
相态 | 0≤A < 0.3 | 0.3≤A < 0.7 | 0.7≤A≤1 | ΔA≤0.1 | A2主要相态 |
地物回波 | 10.40% | 65.95% | 23.65% | 44.61% | 晴空回波 |
晴空回波 | 12.75% | 76.80% | 10.45% | 19.29% | 地物回波 |
干雪 | 18.29% | 26.09% | 55.62% | 21.37% | 冰晶 |
湿雪 | 0.02% | 38.77% | 61.21% | 11.78% | 干雪 |
冰晶 | 15.64% | 62.48% | 21.88% | 35.49% | 干雪 |
霰 | 0.00% | 20.93% | 79.07% | 22.66% | 冰晶 |
大雨滴 | 1.86% | 45.66% | 52.48% | 33.05% | 小到中雨 |
小到中雨 | 17.33% | 39.57% | 43.10% | 20.70% | 大雨 |
大雨 | 0.04% | 31.99% | 67.96% | 37.25% | 冰雹 |
冰雹 | 0.11% | 76.86% | 23.03% | 48.08% | 大雨 |
Table 3 Insufficiency of hydrometeor classification results
识别效果的不足 | 冰雹 | 大雨 | 霰 | 冰晶 | 干雪 | 地物 | 晴空 |
隶属函数不合理 | 是 | 否 | 否 | 是 | 是 | 是 | 是 |
相态区分度不足 | 是 | 是 | 否 | 是 | 否 | 是 | 否 |
对Zh误差敏感 | 是 | 是 | 是 | 是 | 否 | 否 | 否 |
对ZDR误差敏感 | 是 | 否 | 是 | 否 | 是 | 否 | 否 |
空间分布异常 | 是 | 否 | 否 | 否 | 否 | 否 | 否 |
Table 4 Membership functions before and after modification
相态 | 偏振参量 | 原隶属函数 | 新隶属函数 |
地物 | Zh/dBZ | (15, 20, 70, 80) | (-19, -16, -2.5, 1.5) |
ρhv | (0.4, 0.6, 0.9, 0.95) | (0.43, 0.48, 0.85, 0.95) | |
σZh/dBZ | (2, 4, 10, 15) | (0.5, 1.0, 4.5, 6.5) | |
σФDP/(°) | (30, 40, 100, 120) | (15, 35, 125, 136) | |
晴空回波 | Zh/dBZ | (5, 10, 20, 30) | (-5, -3, 4.5, 6.5) |
ρhv | (0, 2, 10, 12) | (0.5, 0.6, 0.83, 0.9) | |
σФDP/(°) | (8, 10, 100, 120) | (15, 23, 103, 120) | |
干雪 | ZDR/dB | (-0.3, 0.0, 0.3, 0.6) | (-0.5, -0.3, 0.3, 0.6) |
ρhv | (0.95, 0.98, 1.00, 1.01) | (0.94, 0.97, 1.00, 1.01) | |
冰晶 | ρhv | (0.95, 0.98, 1.00, 1.01) | (0.94, 0.97, 1.00, 1.01) |
大雨 | KDP/dB | (g1-1, g1, g2, g2+1) | (g1+6, g1+7, g2+1, g2+2) |
冰雹 | ZDR/dB | (-0.3, 0.0, f1, f1+0.5) | (-1.3, -1, f1, f1+0.5) |
KDP/dB | (-10, -4, g1, g1+1) | (-10, -4, g1+6, g1+7) |
Table 5 Proportion and height of misclassified a mixture of rain and hail
云类型 | 时段 | 订正冰雹占比/% | 被订正冰雹的平均高度/m | 冰雹的平均高度/m |
层状云加对流云 | 2017-03-18—20 | 10.73 | 763.52 | 1886.25 |
2017-04-12—13 | 23.92 | 889.94 | 4084.63 | |
线状对流单体 | 2017-04-26—27 | 8.45 | 17916.59 | 2877.42 |
零散对流单体 | 2017-03-07—09 | 24.71 | 647.47 | 1464.55 |
2017-03-25—26 | 17.21 | 1419.22 | 3115.25 | |
2017-03-29—30 | 18.82 | 1965.07 | 2872.65 | |
2017-05-07—08 | 19.97 | 1593.02 | 2155.58 | |
对流单体合并 | 2017-04-11—12 | 8.81 | 840.62 | 2441.58 |
2017-04-19—20 | 8.98 | 1520.22 | 4328.00 | |
飑线 | 2017-05-04—05 | 16.71 | 1456.96 | 3321.23 |
2017-03-31—04-01 | 0.36 | 1978.03 | 2697.98 | |
2017-05-08—09 | 8.24 | 1112.96 | 3506.09 |
[1] |
王洪, 孔凡铀, Jung Youngsun, 等.面向资料同化的S波段双偏振雷达质量控制.应用气象学报, 2018, 29(5):546-558. DOI: 10.11898/1001-7313.20180504
|
[2] |
曹杨, 陈洪滨, 苏德斌.C波段双线偏振天气雷达零度层亮带识别和订正.应用气象学报, 2018, 29(1):84-96. DOI: 10.11898/1001-7313.20180108
|
[3] |
阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. DOI: 10.11898/1001-7313.20170207
|
[4] |
Straka J M, Zrnic D S.An Algorithm to Deduce Hydrometeor Types and Contents from Multiparameter Radar Data//Preprints, 26th Int Conference on Radar Meterology.Norman, Oklahoma, Amer Meteor Soc, 1993: 513-516.
|
[5] |
Straka J M, Mansell E R.A bulk microphysics parameterization with multiple ice precipitation categories.J Appl Meteorol, 2005, 44:445-466. DOI: 10.1175/JAM2211.1
|
[6] |
Zrnic D S, Ryzhkov A V.Polarimetry for weather surveillance radars.Bull Amer Meteor Soc, 1999, 80:389-406. DOI: 10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2
|
[7] |
Vivekanandan J, Zrnic D S, Ellis S, et al.Cloud microphysics retrieval using S-band dual-polarization radar measurements.Bull Amer Meteor Soc, 1999, 80:381-388. DOI: 10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2
|
[8] |
Park H S, Ryzhkov A V, Zrnic D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3):730-748. DOI: 10.1175/2008WAF2222205.1
|
[9] |
Liu H, Chandrasekar V.Classification of hydrometeors based on polarimetric radar measurements:Development of fuzzy logic and neuro-fuzzy systems, and in situ verification.J Atmos Oceanic Technol, 2000, 17(2):140-164. DOI: 10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2
|
[10] |
Al-Sakka H, Boumahmoud A A, Béatrice F, et al.A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars.J Appl Meteor Climatol, 2013, 52(10):2328-2344. DOI: 10.1175/JAMC-D-12-0236.1
|
[11] |
Bechini R, Chandrasekar V.A semisupervised robust hydrometeor classification method for dual-polarization radar applications.J Atmos Oceanic Technol, 2015, 32(1):22-47. DOI: 10.1175/JTECH-D-14-00097.1
|
[12] |
曹俊武, 刘黎平, 葛润生.模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究.大气科学, 2005, 29(5):827-836. http://d.old.wanfangdata.com.cn/Periodical/daqikx200505015
|
[13] |
Wu C, Liu L, Wei M, et al.Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China.Adv Atmos Sci, 2018, 35(3):296-316. DOI: 10.1007/s00376-017-6241-0
|
[14] |
顾震潮.云雾降水物理基础.北京:科学出版社, 1980:173-179.
|
[15] |
石宝灵, 王红艳, 刘黎平.云南多普勒天气雷达网探测冰雹的覆盖能力.应用气象学报, 2018, 29(3):270-281. DOI: 10.11898/1001-7313.20180302
|
[16] |
黄先香, 俞小鼎, 炎利军, 等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报, 2018, 29(1):70-83. DOI: 10.11898/1001-7313.20180107
|
[17] |
郭欣, 郭学良, 陈宝君, 等.一次大冰雹形成机制的数值模拟.应用气象学报, 2019, 30(6):651-664. DOI: 10.11898/1001-7313.20190602
|
[18] |
马淑萍, 王秀明, 俞小鼎.极端雷暴大风的环境参量特征.应用气象学报, 2019, 30(3):292-301. DOI: 10.11898/1001-7313.20190304
|
[19] |
李丰, 刘黎平, 王红艳, 等.S波段多普勒天气雷达非降水气象回波识别.应用气象学报, 2012, 23(2):147-158. http://qikan.camscma.cn/jamsweb/article/id/20120203
|
[20] |
张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001:327-328.
|
[21] |
丁青兰, 刘黎平, 葛润生, 等.双线偏振多普勒雷达测量精度的理论分析.应用气象学报, 2003, 24(1):30-38. http://qikan.camscma.cn/jamsweb/article/id/20030104
|
[22] |
陈超, 胡志群, 胡胜, 等.广州S波段双偏振雷达数据质量初步分析.热带气象学报, 2018, 34(1):59-67. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201801006
|
[23] |
Lim S, Chandrasekar V, Bringi V N.Hydrometeor classification system using dual-polarization radar measurements:Model improvements and in situ verification.IEEE Trans Geosci Remote Sens, 2005, 43(4):792-801. DOI: 10.1109/TGRS.2004.843077
|
Table 1 Periods and characteristics of precipitation samples
云的特征 | 时段 |
层状云 | 2016-06-04—05 |
层状云加对流云 | 2017-03-18—20 |
2017-04-12—13 | |
线状对流单体 | 2017-04-26—27 |
零散对流单体 | 2017-03-07—09 |
2017-03-25—26 | |
2017-03-29—30 | |
2017-05-07—08 | |
对流单体合并 | 2017-04-11—12 |
2017-04-19—20 | |
飑线 | 2017-05-04—05 |
2017-03-31—04-01 | |
2017-05-08—09 |
Table 2 Distribution of A and proportion of ΔA ≤ 0.1
相态 | 0≤A < 0.3 | 0.3≤A < 0.7 | 0.7≤A≤1 | ΔA≤0.1 | A2主要相态 |
地物回波 | 10.40% | 65.95% | 23.65% | 44.61% | 晴空回波 |
晴空回波 | 12.75% | 76.80% | 10.45% | 19.29% | 地物回波 |
干雪 | 18.29% | 26.09% | 55.62% | 21.37% | 冰晶 |
湿雪 | 0.02% | 38.77% | 61.21% | 11.78% | 干雪 |
冰晶 | 15.64% | 62.48% | 21.88% | 35.49% | 干雪 |
霰 | 0.00% | 20.93% | 79.07% | 22.66% | 冰晶 |
大雨滴 | 1.86% | 45.66% | 52.48% | 33.05% | 小到中雨 |
小到中雨 | 17.33% | 39.57% | 43.10% | 20.70% | 大雨 |
大雨 | 0.04% | 31.99% | 67.96% | 37.25% | 冰雹 |
冰雹 | 0.11% | 76.86% | 23.03% | 48.08% | 大雨 |
Table 3 Insufficiency of hydrometeor classification results
识别效果的不足 | 冰雹 | 大雨 | 霰 | 冰晶 | 干雪 | 地物 | 晴空 |
隶属函数不合理 | 是 | 否 | 否 | 是 | 是 | 是 | 是 |
相态区分度不足 | 是 | 是 | 否 | 是 | 否 | 是 | 否 |
对Zh误差敏感 | 是 | 是 | 是 | 是 | 否 | 否 | 否 |
对ZDR误差敏感 | 是 | 否 | 是 | 否 | 是 | 否 | 否 |
空间分布异常 | 是 | 否 | 否 | 否 | 否 | 否 | 否 |
Table 4 Membership functions before and after modification
相态 | 偏振参量 | 原隶属函数 | 新隶属函数 |
地物 | Zh/dBZ | (15, 20, 70, 80) | (-19, -16, -2.5, 1.5) |
ρhv | (0.4, 0.6, 0.9, 0.95) | (0.43, 0.48, 0.85, 0.95) | |
σZh/dBZ | (2, 4, 10, 15) | (0.5, 1.0, 4.5, 6.5) | |
σФDP/(°) | (30, 40, 100, 120) | (15, 35, 125, 136) | |
晴空回波 | Zh/dBZ | (5, 10, 20, 30) | (-5, -3, 4.5, 6.5) |
ρhv | (0, 2, 10, 12) | (0.5, 0.6, 0.83, 0.9) | |
σФDP/(°) | (8, 10, 100, 120) | (15, 23, 103, 120) | |
干雪 | ZDR/dB | (-0.3, 0.0, 0.3, 0.6) | (-0.5, -0.3, 0.3, 0.6) |
ρhv | (0.95, 0.98, 1.00, 1.01) | (0.94, 0.97, 1.00, 1.01) | |
冰晶 | ρhv | (0.95, 0.98, 1.00, 1.01) | (0.94, 0.97, 1.00, 1.01) |
大雨 | KDP/dB | (g1-1, g1, g2, g2+1) | (g1+6, g1+7, g2+1, g2+2) |
冰雹 | ZDR/dB | (-0.3, 0.0, f1, f1+0.5) | (-1.3, -1, f1, f1+0.5) |
KDP/dB | (-10, -4, g1, g1+1) | (-10, -4, g1+6, g1+7) |
Table 5 Proportion and height of misclassified a mixture of rain and hail
云类型 | 时段 | 订正冰雹占比/% | 被订正冰雹的平均高度/m | 冰雹的平均高度/m |
层状云加对流云 | 2017-03-18—20 | 10.73 | 763.52 | 1886.25 |
2017-04-12—13 | 23.92 | 889.94 | 4084.63 | |
线状对流单体 | 2017-04-26—27 | 8.45 | 17916.59 | 2877.42 |
零散对流单体 | 2017-03-07—09 | 24.71 | 647.47 | 1464.55 |
2017-03-25—26 | 17.21 | 1419.22 | 3115.25 | |
2017-03-29—30 | 18.82 | 1965.07 | 2872.65 | |
2017-05-07—08 | 19.97 | 1593.02 | 2155.58 | |
对流单体合并 | 2017-04-11—12 | 8.81 | 840.62 | 2441.58 |
2017-04-19—20 | 8.98 | 1520.22 | 4328.00 | |
飑线 | 2017-05-04—05 | 16.71 | 1456.96 | 3321.23 |
2017-03-31—04-01 | 0.36 | 1978.03 | 2697.98 | |
2017-05-08—09 | 8.24 | 1112.96 | 3506.09 |