Zong Xuemei. Estimating the inversion accuracy of atmospheric temperature and water vapor profile under limb sounding. J Appl Meteor Sci, 2020, 31(4): 471-481. DOI:  10.11898/1001-7313.20200409.
Citation: Zong Xuemei. Estimating the inversion accuracy of atmospheric temperature and water vapor profile under limb sounding. J Appl Meteor Sci, 2020, 31(4): 471-481. DOI:  10.11898/1001-7313.20200409.

Estimating the Inversion Accuracy of Atmospheric Temperature and Water Vapor Profile Under Limb Sounding

DOI: 10.11898/1001-7313.20200409
  • Received Date: 2020-02-10
  • Rev Recd Date: 2020-03-31
  • Publish Date: 2020-07-31
  • Profiles of atmospheric temperature and water vapor are important for studying atmospheric state and play an important role in the energy balance of earth-atmosphere system. Limb remote sensing is an important means to obtain the profile of atmospheric parameters. The atmospheric radiation ultra-high spectral detector developed by Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has a detection band range of 650-3050 cm-1 and the spectral resolution on limb view is as high as 0.015 cm-1, which will be the highest spectral resolution that the world's Fourier spectral detector can achieve. A method by using information and weighting function linearization are proposed to evaluate the inversion accuracy of the research instrument in advance. Weighting functions of atmospheric temperature and water vapor at 16 different tangent points are simulated and calculated by RFM model. The degree of signal freedom and the entropy reduction are also calculated by the information content method, and the optimal number of inversion channels is determined to be 200 by the stepwise iterative algorithm. Combined with the threshold (0.3 K) of detectable brightness temperature and the linearized weighting function of the instrument, the available spectral channel numbers of atmospheric temperature and volume mixing ratio of water vapor profiles under different inversion accuracy of six atmosphere models (US standard atmosphere, tropical atmosphere, middle-latitude summer atmosphere, middle-latitude winter atmosphere, subarctic summer atmosphere, subarctic winter atmosphere) are calculated and analyzed, and the inversion accuracy is estimated theoretically. On the demanded optimal 200 channels, the inversion accuracy of the whole temperature profile is 0.6 K, but if the inversion accuracy of the temperature profile is required to be 0.5 K, the number of channels available for inversion at a higher tangent height is smaller. Except the tropical atmosphere model, there are enough channels for the other five atmosphere models meeting 5% accuracy demands of the inversion of water vapor volume mixing ratio profiles. However, the inversion of the water vapor profile of the tropical atmosphere has barely enough channels at 16-20 km for 10% relative inversion accuracy of volume mixing ratio. The number of channels usable for atmospheric parameters retrieving increases by the decreasing of inversion accuracy. Among six atmosphere models, the tropical atmosphere is relatively special and its inversion accuracy is lower, which may be related to the unique temperature profile of the tropical atmosphere. There is no isothermal layer in the tropical atmosphere, which may lead to fewer atmospheric parameter inversion channels near the height of sharp temperature transition.
  • Fig. 1  Weighting function of atmospheric temperature at different tangent heights

    Fig. 2  Linear diagram(a) and logarithmic diagram(b) of CO2's line intensity(I)

    Fig. 3  Weighting function of water vapor at different tangent heights

    Fig. 4  Linear diagram(a) and logarithmic diagram(b) of water vapor's line intensity(I′)

    Fig. 5  Degree of signal freedom and entropy reduction of atmospheric temperature change with spectral channel numbers

    Fig. 6  Six atmospheric temperature profiles

    Fig. 7  Six volume mixing ratio profiles of water vapor

    Table  1  The sum of degree of signal freedom and entropy reduction at tangent heights of 11.0 km and 25.3 km for atmospheric temperature and water vapor for different channel numbers

    光谱通道数温度(11.5 km)水汽(11.5 km)温度(25.3 km)水汽(25.3 km)
    DownLoad: Download CSV

    Table  2  Available channel numbers under six different atmospheric temperature inversion accuracy conditions

    0.0 km4.6 km11.5 km16.1 km20.7 km25.3 km34.5 km
    DownLoad: Download CSV

    Table  3  Available channel numbers under six different volume mixing ratio of water vapor inversion accuracy conditions

    0.0 km4.6 km11.5 km16.1 km20.7 km25.3 km34.5 km
    DownLoad: Download CSV
  • [1]
    单楠, 何平, 吴蕾.风廓线雷达反演温度平流的应用.应用气象学报, 2016, 27(3):323-333. doi:  10.11898/1001-7313.20160307
    何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. doi:  10.3969/j.issn.1001-7313.2002.02.006
    漆成莉, 董超华, 张文建, 等.FY-3A气象卫星红外分光计温度廓线模拟反演试验.应用气象学报, 2005, 16(5):576-582. doi:  10.3969/j.issn.1001-7313.2005.05.003
    胡秀清, 黄意玢, 陆其峰, 等.利用FY-3A近红外资料反演水汽总量.应用气象学报, 2011, 22(1):46-56. doi:  10.3969/j.issn.1001-7313.2011.01.005
    Lerner J A, Weisz E, Kirchengast G.Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements.J Geophys Res, 2002, 107(D14):4189-4199. doi:  10.1029/2001JD900254
    Milz M, Clarmann T V, Fischer H, et al.Water vapor distributions measured with the Michelson Interferometer for Passive Atmospheric Sounding on board Envisat (MIPAS/Envisat).J Geophys Res, 2005, 110, D24307, DOI: 10.1029/2005JD005973.
    Guan L, Huang A, Li J.A study on retrieving atmospheric profiles from EOS/AIRS observations.Acta Meteor Sinica, 2004, 19(1):112-119. http://d.wanfangdata.com.cn/Periodical/qxxb-e200501012
    McNally A P, Watts P D, Smith J A, et al.The assimilation of AIRS radiance data at ECMWF.Quart J Roy Meteor Soc, 2006, 132:935-957. doi:  10.1256/qj.04.171
    Le Marshall J, Jung J, Derber J, et al.Impact of atmospheric infrared sounder observations on weather forecasts.Eos, 2005, 86(11):109-116. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz-e201810001
    董立新, 杨虎, 张鹏, 等.FY-3A陆表温度反演及高温天气过程动态监测.应用气象学报, 2012, 23(2):214-222. doi:  10.3969/j.issn.1001-7313.2012.02.010
    Collard A D, McNally A P.The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF.Quart J Roy Meteor Soc, 2009, 135:1044-1058. doi:  10.1002/qj.410
    Wang P, Li J, Goldberg M D, et al.Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP.J Geophys Res Atmos, 2015, 120(11):5469-5484. doi:  10.1002/2014JD022976
    张文建, 黎光清, 董超华.用卫星遥感资料反演气象参数的误差分析及数值试验.应用气象学报, 1992, 3(3):266-272. http://qikan.camscma.cn/jamsweb/article/id/19920346
    王倩, 杨忠东, 毕研盟.高光谱遥感仪器的光谱参数和信噪比需求.应用气象学报, 2014, 25(5):600-609. http://qikan.camscma.cn/jamsweb/article/id/20140509
    Miloshevich L M, Voemel H, Whiteman D N, et al.Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G, and implications for AIRS validation.J Geophys Res, 2006, 111, D09S10, DOI: 10.1029/2005JD006083.
    Divakarla M G, Barnet C D, Goldberg M D, et al.Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts.J Geophys Res, 2006, 111, D09S15, DOI: 10.1029/2005JD006116.
    Shephard M W, Worden H M, Cady-Pereira K E, et al.Tropospheric Emission Spectrometer nadir spectral radiance comparisons.J Geophys Res Atmos, 2008, 113, D15S05, DOI: 10.1029/2007JD008856.
    Wetzel G, Oelhaf H, Berthet G, et al.Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004.Atmos Chem Phys, 2013, 213:5791-5811. https://ui.adsabs.harvard.edu/abs/2013ACP....13.5791W/abstract
    Dudhia A.The Reference Forward Model (RFM).Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 186:243-253.
    Rozanov V V, Buchwitz M, Eichmann K U, et al.Sciatran-A new radiative transfer model for geophysical applications in the 240-2400 nm spectral region:The pseudo-spherical version.Adv Space Res, 2002, 29(11):1831-1835. doi:  10.1016/S0273-1177(02)00095-9
    Scott N A, Chedin A.A fast line-by-line method for atmospheric absorption computations:The Automatized Atmospheric Absorption Atlas.J Appl Meteor, 1981, 20:802-812. doi:  10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2
    Clough S A, Shephard M W, Mlawer E J, et al.Atmospheric radiative transfer modeling:A summary of the AER codes, short communication.Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91:233-244. https://www.sciencedirect.com/science/article/pii/S0022407304002158
    Gordon I E, Rothman L S, Hill C, et al.The HITRAN2016 Molecular Spectroscopic Database.Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 203:3-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38a1191c49dc7a929cd3dddf583a0050
    毕研盟, 杨忠东, 卢乃锰, 等.近红外CO2高光谱探测仪通道选择.应用气象学报, 2014, 25(2):143-149. doi:  10.3969/j.issn.1001-7313.2014.02.003
    黄意玢, 董超华.用940 nm通道遥感水汽总量的可行性试验.应用气象学报, 2002, 13(2):184-192. doi:  10.3969/j.issn.1001-7313.2002.02.007
    Rodgers C D.Information content and optimization of high spectral resolution remote measurements.Adv Space Res, 1998, 21(3):361-367. doi:  10.1016/S0273-1177(97)00915-0
    Crevoisier C, Chedin A, Scott N A.AIRS channel selection for CO2 and other trace-gas retrievals.Quart J Roy Meteor Soc, 2003, 129:2719-2740. doi:  10.1256/qj.02.180
    Fourrie N, Thepaut J N.Evaluation of the AIRS near-real-time channel selection for application to numerical weather prediction.Quart J Roy Meteor Soc, 2003, 129:2425-2439. doi:  10.1256/qj.02.210
    Dudhia A, Jay V L, Rodgers C D.Microwindow selection for high-spectral-resolution sounders.Appl Opt, 2002, 41:3665-3673. doi:  10.1364/AO.41.003665
    Worden J, Kulawik S S, Shephard M W, et al.Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection.J Geophys Res, 2004, 109, D09308, DOI: 10.1029/2004JD004522.
    Collard A D.Selection of IASI channels for use in numerical weather prediction.Quart J Roy Meteor Soc, 2007, 133:1977-1991. doi:  10.1002/qj.178
    Rabier F, Fourrié N, Chafäi D, et al.Channel selection methods for infrared atmospheric sounding interferometer radiances.Quart J Roy Meteor Soc, 2002, 128:1011-1027. doi:  10.1256/0035900021643638
  • 加载中
  • -->


    Figures(7)  / Tables(3)

    Article views (2422) PDF downloads(60) Cited by()
    • Received : 2020-02-10
    • Accepted : 2020-03-31
    • Published : 2020-07-31


    DownLoad:  Full-Size Img  PowerPoint