Li Hualong, Wang Jinghong, Zhang Weimin, et al. Freezing injury index of kiwifruit branches for main varieties under simulated low temperature. J Appl Meteor Sci, 2021, 32(5): 618-628. DOI:  10.11898/1001-7313.20210509.
Citation: Li Hualong, Wang Jinghong, Zhang Weimin, et al. Freezing injury index of kiwifruit branches for main varieties under simulated low temperature. J Appl Meteor Sci, 2021, 32(5): 618-628. DOI:  10.11898/1001-7313.20210509.

Freezing Injury Index of Kiwifruit Branches for Main Varieties Under Simulated Low Temperature

DOI: 10.11898/1001-7313.20210509
  • Received Date: 2021-04-06
  • Rev Recd Date: 2021-06-04
  • Publish Date: 2021-09-30
  • Low temperature freezing injury is the main meteorological disaster affecting the yield and quality of kiwifruit in China. To explore the damage mechanism of low temperature stress on kiwifruit and establish the indices of kiwifruit overwintering freezing injury, the impacts on fruit parent branches of kiwifruit are investigated by simulating natural freezing injury process with MSX-2F artificial simulated frost box system. Growth recovery method, tissue browning method, cell freezing point temperature method and cell membrane damage rate method are used to describe the characteristics of freezing injury quantitatively. By establishing the logistic analysis model of the relationship between freezing injury index and low temperature, the characteristics of freezing injury of 6 varieties are studied systematically. The results show that the response of different varieties to low temperature are significantly different. The supercooling point of Ruiyu and Hayward are lower, which are -3.4 ℃ and -3.2 ℃, respectively. The supercooling point of Xuxiang, Jinfu and Cuixiang are basically similar, which are -2.0 ℃, -1.7 ℃ and -1.7 ℃, respectively. The supercooling point of Hongyang is the highest, which is -1.4 ℃. The half-lethal temperature of buds of Hayward (-16.5 ℃) is the lowest. The half-lethal temperature of Ruiyu (-14.8 ℃), Xuxiang (-14.9 ℃) and Jinfu (-14.2 ℃) is intermediate. And the half-lethal temperature of Cuixiang (-13.4 ℃) and Hongyang (-13.8 ℃) are the highest. The differences in the degree and site of injury caused by different intensities of low temperature are significant. The freezing injury caused by -16 ℃ to -10 ℃ mainly affects the activity of the main bud of the resulting parent shoot. When the temperature is below -18 ℃, the low temperature damages the activity of main and secondary buds. And when the temperature is below -20 ℃, a large number of parent shoots are killed by low temperature injury. Among varieties, the frost resistance of Hayward is the strongest, Ruiyu, Jinfu and Xuxiang are the middle, and Cuixiang and Hongyang are the weakest. Taking the freezing injury index of the resulting parent branch bud as the main parameter, the 5-grade low temperature freezing injury index of the resulting parent branch is constructed by different varieties. Its freezing temperature ranges of level 1-5 are -11.0 ℃ to -10.5 ℃, -14.5 ℃ to -10.5 ℃, -16.5 ℃ to -12.0 ℃, -20.0 ℃ to -13.5 ℃, -20.0 ℃ to -15.0 ℃, respectively.
  • Fig. 1  Temperature of freezing injury during overwintering for kiwifruit

    Fig. 2  The bud retention rates of kiwifruit branch under different freezing injury intensities

    Fig. 3  The bud frostbite rates of kiwifruit branch under different freezing injury intensities

    Fig. 4  The bud browning rates of kiwifruit branch under different freezing injury intensities

    Fig. 5  The bud freezing injury index of kiwifruit branch under different freezing injury intensities

    Fig. 6  The freezing injury index of kiwifruit branch under different freezing injury intensities

    Fig. 7  The cell damage rates of kiwifruit branch under different low temperature intensities

    Table  1  Morphological grading standard of freeze injury degree of kiwifruit bud base and branch

    类别 冻害等级 冻害程度形态表现
    芽座 0 主芽正常萌发;或未萌发但芽座海绵体正常、主芽轴正常,芽座活性未受低温影响,为正常芽
    1 主芽芽轴褐变或干枯,不能萌发出结果枝,丧失结果能力;芽座海绵体正常,副芽存活,可萌发出营养枝,为冻伤芽
    2 主芽芽轴褐变或干枯,不能萌发出结果枝,丧失结果能力;芽座海绵体褐变,副芽也丧失萌发力,不能萌发出营养枝,影响次年结果,为褐变芽
    枝条 0 韧皮部鲜绿正常
    1 韧皮部大部绿色,局部褐变
    2 韧皮部大部褐变,局部存有绿色
    3 韧皮部失绿褐变
    DownLoad: Download CSV

    Table  2  Temperatures of supercooling point and freezing point for different kiwifruit varieties

    温度 海沃德 徐香 金福 瑞玉 翠香 红阳
    过冷却点/℃ -3.2 -2.0 -1.7 -3.4 -1.7 -1.4
    结冰点/℃ -1.4 -0.8 -0.7 -1.8 -0.6 -0.2
    跃升值/℃ 1.8 1.2 1.0 1.6 1.1 1.2
    DownLoad: Download CSV

    Table  3  Logistic fitting equations between freezing injury index of kiwifruit bud base and low temperature intensity

    品种 拟合方程 半致死温度/℃ 拟合度
    翠香 F=100/(1+2461.96e0.75x)* -13.4 0.69
    海沃德 F=100/(1+240.06e0.43x)** -16.5 0.97
    红阳 F=100/(1+9541.10e0.85x)* -13.8 0.71
    金福 F=100/(1+16974.71e0.88x)** -14.2 0.84
    瑞玉 F=100/(1+454.54e0.53x)* -14.8 0.83
    徐香 F=100/(1+1642.33e0.64x)** -14.9 0.85
    注:**表示达到0.01显著性水平,*表示达到0.05显著性水平。
    DownLoad: Download CSV

    Table  4  The grading indexes of low temperature freezing injury for 6 varieties of kiwifruit branch

    品种 结果母枝低温冻害等级温度(T/℃)
    1级 2级 3级 4级 5级
    翠香 T≥-10.5 -12.0 ≤T<-10.5 -13.5≤T<-12.0 -15.0≤T<-13.5 T<-15.0
    海沃德 T≥-11.5 -14.5≤T<-11.5 -16.5≤T<-14.5 -20.0≤T<-16.5 T<-20.0
    红阳 T≥-11.0 -13.0≤T<-11.0 -14.0≤T<-13.0 -15.5≤T<-14.0 T<-15.5
    金福 T≥-11.5 -13.0≤T<-11.5 -14.0≤T<-13.0 -16.0≤T<-14.0 T<-16.0
    瑞玉 T≥-10.5 -13.0≤T<-10.5 -15.0≤T<-13.0 -17.5≤T<-15.0 T<-17.5
    徐香 T≥-11.5 -13.5≤T<-11.5 -15.0≤T<-13.5 -17.0≤T<-15.0 T<-17.0
    DownLoad: Download CSV
  • [1]
    Zhu H Y. Actinidia. Beijing: China Forestry Press, 2009.
    [2]
    Sui L Y, Liu Y F, Huang H W. Genetic diversity of red-fleshed kiwifruit germplasm based on fruit traits and AFLP markers. Acta Horticulturae Sinica, 2013, 40(5): 859-868. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201305008.htm
    [3]
    Li J Q, Li X W, Soejarto D D. Actinidiaceae. Flora of China, 2007, 12: 334-360.
    [4]
    Liang C F. On the distribution of Actinidias. Guangxi Plants, 1983, 3(4): 3-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GXZW198304000.htm
    [5]
    Cui Z X. Chinese Actinidia. Jinan: Shandong Scienceand Technology Press, 1993.
    [6]
    Huang H W. Chinese Kiwifruit Germplasm Resources. Beijing: China Forestry Publishing House, 2013.
    [7]
    China Kiwifruit Industry Development Report(2020). (2020-09-25)[2021-03-03]. https://www.sohu.com/a/420839164_230053.
    [8]
    Zhong C H, Huang H W. Forty Years of Scientific Research and Industry of Kiwifruit in China. Hefei: China University of Science and Technology Press, 2018.
    [9]
    Zhong C H, et al. Kiwifruit Cultivation Theory and Production Technology. Beijing: Science and Technology Press, 2020.
    [10]
    Huang M, Chen J Z. Research progress on cold-resistance of fruit trees. Subtropical Plant Science, 2011, 40(1): 80-84. doi:  10.3969/j.issn.1009-7791.2011.01.021
    [11]
    Testolin R, Messina R. Winter cold tolerance of kiwifruit. A survey after winter frost injury in Northern Italy. New Zealand Journal of Experimental Agriculture, 1987, 15(4): 501-504. doi:  10.1080/03015521.1987.10425604
    [12]
    Latocha P. Frost Resistance and Spring Frost Sensibility of a Few Cultivars of Actinidia Grown in Central Poland//Annals of Warsaw University of Life Sciences-SGGW Horticulture and Landscape Architecture, 2008, 29: 111-120.
    [13]
    Ebrahimi Y, Jorshari H, Lashtneshaii K H. Frost Damage on Kiwifruit in Iran//Ⅶ International Symposium on Kiwifruit, International Society Horticultural Science, 2011: 315-320.
    [14]
    An C L, Liu Z D, Liu X F, et al. Kiwifruit research report freezing of different ages. Northern Horticulture, 2011(18): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201118017.htm
    [15]
    Huang C S, Wang W Y, Wang L, et al. Analysis and defending countermeasures of Zhouzhi kiwifruit freeze injury climatic characteristics. Journal of Gansu Sciences, 2017, 29(6): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX201706010.htm
    [16]
    Yu Z J, Zhou L S, Wang L, et al. The effects of cold injury on the growth and yield of Actinidia in Lushan Botanical Garden. South China Fruits, 2012, 41(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-FRUI201202027.htm
    [17]
    Chen J J, Li L C, Lin J, et al. Integrated risk evaluation on meteorological disasters of loquat in Fujian Province. Journal of Applied Meteorological Science, 2014, 25(2): 232-241. doi:  10.3969/j.issn.1001-7313.2014.02.013
    [18]
    Yang K, Chen B B, Chen H, et al. Comprehensive climatic index and grade classification of cold damage for Taiwan green jujube in Fujian. Journal of Applied Meteorological Science, 2020, 31(4): 427-434. doi:  10.11898/1001-7313.20200405
    [19]
    Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. doi:  10.11898/1001-7313.20160401
    [20]
    Qu Z J, Bai Q F, Liang Y, et al. Potential impacts of climate change on the main meteorological disaster risk of kiwifruit in Shaanxi province. Journal of Fruit Science, 2014, 31(5): 873-898. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201405025.htm
    [21]
    Hewett E W, Young K. Critical freeze damage temperatures of flower buds of kiwifruit(Actinidia chinensis Planch. ). New Zealand Journal of Agricultural Research, 1981, 24(1): 73-75. doi:  10.1080/00288233.1981.10420873
    [22]
    Pyke N B, Stanley C J, Warrington I J. Kiwifruit: Frost tolerance of plants in controlled frost conditions. New Zealand Journal of Experimental Agriculture, 1986, 14(4): 443-447. doi:  10.1080/03015521.1986.10423063
    [23]
    Burak M, Samanci H, Buyukyilmaz M. Winter frost resistance of Hayward and Matua kiwifruit cultivars. Zahradnictvi(Horticultural Science), 2004, 31(1): 27-30. http://www.researchgate.net/publication/242708450_Winter_frost_resistance_of_Hayward_and_Matua_kiwifruit_cultivars
    [24]
    Sun S H. Establishment and Application of Cold Resistance Evaluation System of Kiwifruit. Beijing: Chinese Academy of Agricultural Sciences, 2018.
    [25]
    Wang Z, Luo H, Li Y L, et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years. Journal of Applied Meteorological Science, 2016, 27(1): 85-94. doi:  10.11898/1001-7313.20160109
    [26]
    Chen Y, Ren G Y, Wang L, et al. Temporal change of warm winter events over the last 56 years in China. Journal of Applied Meteorological Science, 2009, 20(5): 539-545. doi:  10.3969/j.issn.1001-7313.2009.05.004
    [27]
    Wang P J, Tang J X, Jin Z F, et al. Review on spring frost disaster for tea plant in China. Journal of Applied Meteorological Science, 2021, 32(2): 129-145. doi:  10.11898/1001-7313.20210201
    [28]
    Lin M M, Sun S H, Qi X J, et al. Advances in research on cold resistance in kiwifruit. Journal of Fruit Science, 2020, 37(7): 1073-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK202007013.htm
    [29]
    Wu B Z, Guo J P, Liu X, et al. Research progress on freezing damage and cold resistance of kiwifruit. Tianjin Agricultural Sciences, 2020, 26(8): 67-71. doi:  10.3969/j.issn.1006-6500.2020.08.017
    [30]
    Duan X F, Zhu Y N, Zhang L, et al. Experimental research on frost indexes for lycium barbarum flowering phase. Journal of Applied Meteorological Science, 2020, 31(4): 417-426. doi:  10.11898/1001-7313.20200404
    [31]
    Yang A P, Du X L, Wang B S, et al. The multiple-meteorological-factor indexes for orange frozen injury in Jiangxi Province. Journal of Applied Meteorological Science, 2013, 24(2): 248-256. doi:  10.3969/j.issn.1001-7313.2013.02.013
    [32]
    Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. Journal of Applied Meteorological Science, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510
    [33]
    Li X M, Bai Q F, Zhu L. The influence of climate change on suitability of Shaanxi apple growth. Journal of Applied Meteorological Science, 2011, 22(2): 241-248. doi:  10.3969/j.issn.1001-7313.2011.02.013
    [34]
    Wang W, Li H X, Zhao M X, et al. Study on the cold resistance and the semi-lethal temperatures for seven pear cultivars. Journal of Fruit Science, 2015, 32(5): 860-865. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201505022.htm
    [35]
    Zhao T T, Han F, Chen M Y, et al. Study on chilling requirements of important kiwifruit cultivars determined by three models. China Fruits, 2018(6): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS201806013.htm
    [36]
    Yu J Y. Efficient Cultivation of Kiwifruit. Beijing: Machinery Industry Press, 2016.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (1662) PDF downloads(81) Cited by()
    • Received : 2021-04-06
    • Accepted : 2021-06-04
    • Published : 2021-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint