Gao Qian, Liu Quan, Bi Kai, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. DOI:   10.11898/1001-7313.20210602.
Citation: Gao Qian, Liu Quan, Bi Kai, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. DOI:   10.11898/1001-7313.20210602.

Estimation of Aerosol Activation Ratio and Water Vapor Supersaturation at Cloud Base Using Aircraft Measurement

DOI: 10.11898/1001-7313.20210602
  • Received Date: 2021-07-28
  • Rev Recd Date: 2021-10-13
  • Publish Date: 2021-11-23
  • The vertical evolution of aerosol physiochemical properties significantly influence the capacity of particle water uptake at different atmospheric levels, which are important for the estimation of direct and indirect radiative impacts of aerosol. However, as one of the most important environmental parameters during the formation of cloud or fog, water vapor supersaturation cannot be directly measured. An aircraft observation was carried out on 13 November 2016 with stable stratiform clouds covering Beijing area. The results of aircraft in-situ measured aerosol particle size distribution, chemical composition, cloud droplet spectrum, and vertical distribution of aerosol physicochemical properties and activation ability near the cloud base are analyzed. The results show that Beijing area is under polluted conditions during the flight detection with the surface aerosol concentration (0.11-3 μm) of 4600 cm-3. The height range of cloud layer is 800-1200 m. The number concentration of aerosols at the cloud base is greatly lower compared with the surface, and the effective diameter significantly increases from 0.3 μm to 0.6 μm. Aerosol composition varies drastically with altitudes. The hydrophobic primary organic aerosol (POA) has a significant contribution at surface, but sharply decreases at the cloud base. Meanwhile, the fraction of inorganic species and secondary organic aerosol (SOA) increase significantly from surface to cloud base, resulting in hygroscopic parameter (κ) increasing from 0.25 (ground) to 0.32 (cloud base). The number concentration size spectrum of cloud droplets and aerosols in the cloud can be well connected, which could be deemed as activated and un-activated particles respectively. Meanwhile, the sum of their number concentrations is approximately equal to the total aerosol concentration below the cloud, indicating aerosol particles below the cloud base has a dominant contribution to the cloud droplet formation near the cloud base by activation. Thereby, the actual activation ratio of aerosol particles serves as cloud condensation nuclei (CCN) in the measured cloud can be obtained. Combining with in-situ measured aerosol size distribution, chemical composition, and calculated hygroscopic parameter below the cloud base, the aerosol activation ratio under different supersaturation ratio can be derived. Estimated through the comparison of calculated activation rate and the measurement, the mean supersaturation near this stratiform cloud base is about 0.048%. It implies that the aerosol characteristics at surface may not represent that at upper levels, where the evolution in vertical direction should be considered in evaluating the contribution of surface emissions to cloud particle nucleation and their atmospheric lifetime. This supersaturation estimating method is mainly based on conventional measurement of aerosol and droplets, which has a potential value for further application on cloud analysis.
  • Fig. 1  Flight tracks over Beijing on 13 Nov 2016

    Fig. 2  Infrared cloud image of North China on 13 Nov 2016

    (the red dot represent Beijing)

    Fig. 3  The geopotential height(unit: gpm) on 13 Nov 2016

    (the red dot represents Beijing)

    Fig. 4  Vertical profiles of in-situ measured meteorological parameters during the flight

    (a)temperature, (b)potential temperature, (c)water vapor mixing ratio, (d)relative humidity

    Fig. 5  Vertical profiles of aerosol and cloud droplet over Beijing on 13 Nov 2016 (a)aerosol concentration and effective diameter, (b)cloud droplet concentration

    Fig. 6  Vertical distribution of aerosol chemical composition and hygroscopic parameter

    Fig. 7  Vertical characteristics of aerosol and cloud droplet spectrum over Beijing on 13 Nov 2016

    Fig. 8  The aerosol spectrum and cloud droplet spectrum at different levels

    Fig. 9  The critical radius of cloud condensation nuclei activation at different degree of supersaturation

    Table  1  Density and hygroscopicity parameter(κ) of pure component

    化学物种 密度/(kg·m-3) κ
    NH4NO3 1725 0.68
    (NH4)2SO4 1769 0.52
    NH4HSO4 1780 0.56
    SOA 1400 0.10
    POA 1000 0
    黑碳气溶胶 1800 0
    DownLoad: Download CSV
  • [1]
    Ding Y H, Li Q P, Liu Y J, et al. Atmospheric aerosols, air pollution and climate change. Meteor Mon, 2009, 35(3): 3-14.
    Ma X L, Gao X N, Liu Yu, et al. Simulations of aerosol influences on the East Asian winter monsoon. J Appl Meteor Sci, 2018, 29(3): 333-343. doi:  10.11898/1001-7313.20180307
    Tao X Y, Huang J P, Xie X J, et al. Observational analysis of the influence of aerosol radiation effect on planetary boundary layer structure and entrainment characteristics. Chinese J Atmos Sci, 2020, 44(6): 1213-1223.
    Xu J, Chen D, Zhao X J, et al. Evaluation on SO2 emission inventory optimizing applied to RMAPS_Chem V1.0 system. J Appl Meteor Sci, 2019, 30(2): 164-176. doi:  10.11898/1001-7313.20190204
    Xu Y, Ding Y H, Zhao Z C. Detection and evolution of effect of human activities on climatic change in East Asia in recent 30 years. J Appl Meteor Sci, 2002, 13(5): 513-525.
    Zhang T H, Liao H, Chang W Y. Direct radiative forcing by dust in China based on Atmospheric Chemistry and Climate Model Intercomparison Project(ACCMIP) datasets. Chinese J Atmos Sci, 2016, 40(6): 1242-1260.
    Tsigaridis K, Krol M, Dentener F J, et al. Change in global aerosol composition since preindustrial times. Atmos Chem Phys, 2006, 6: 5143-5162. doi:  10.5194/acp-6-5143-2006
    Li D P, Cheng X H, Sun Z A, et al. Radiative effects of aerosols in different areas of Beijing. J Appl Meteor Sci, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509
    Tian H, Ma J Z, Li W L, et al. Simulation of forcing of sulfate aerosol on direct radiation and its climate effect over middle and eastern China. J Appl Meteor Sci, 2005, 16(3): 322-333.
    Jia X F, Yan P, Meng Z Y, et al. Characteristics of PM2.5 in heavy pollution events in Beijing and surrounding areas from November to December in 2016. J Appl Meteor Sci, 2019, 30(3): 302-315. doi:  10.11898/1001-7313.20190305
    Myhre G, Berglen T F, Johnsrud M, et al. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos Chem Phys, 2009, 9: 1365-1392. doi:  10.5194/acp-9-1365-2009
    Dusek U, Frank G, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 2006, 312: 1375-1378. doi:  10.1126/science.1125261
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    Twomey S. The nuclei of natural cloud formation part Ⅱ: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure and Applied Geophysics, 1959, 43: 243-249. doi:  10.1007/BF01993560
    Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev Geophys, 2000, 38: 513-543. doi:  10.1029/1999RG000078
    Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102: 6831-6864. doi:  10.1029/96JD03436
    Penner J E, Zhang S Y, Chuang C C. Soot and smoke aerosol may not warm climate. J Geophys Res Atmos, 2003, 108: 1-9.
    Zhang X Y, Wang J Z, Wang Y Q, et al. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos Chem Phys, 2015, 15: 12935-12952. doi:  10.5194/acp-15-12935-2015
    Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514: 218-222. doi:  10.1038/nature13774
    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311
    Liu Q, Liu D, Gao Q, et al. Vertical characteristics of aerosol hygroscopicity and impacts on optical properties over the North China Plain during winter. Atmos Chem Phys, 2020, 20: 3931-3944. doi:  10.5194/acp-20-3931-2020
    Zhao D, Huang M, Tian P, et al. Vertical characteristics of black carbon physical properties over Beijing region in warm and cold seasons. Atmos Environ, 2019, 213: 296-310. doi:  10.1016/j.atmosenv.2019.06.007
    Fan J, Leung L R, Li Z, et al. Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J Geophys Res Atmos, 2012, 117, D00K36.
    Liu Q, Quan J, Jia X, et al. Vertical profiles of aerosol composition over Beijing, China: Analysis of in situ aircraft measurements. J Atmos Sci, 2019, 76: 231-245. doi:  10.1175/JAS-D-18-0157.1
    Zhao C S, Peng D Y, Duan Y. The impacts of sea-salt and nss-sulfate aerosols on cloud microproperties. J Appl Meteor Sci, 2005, 16(4): 417-425.
    Duan J, Mao J T. Progress in research on interaction between aerosol and cloud. Advances in Earth Science, 2008, 23(3): 252-261. doi:  10.3321/j.issn:1001-8166.2008.03.005
    Andreae M, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 2008, 89: 13-41. doi:  10.1016/j.earscirev.2008.03.001
    Liu X, Gu J, Li Y, et al. Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility. Atmos Res, 2013, 132/133: 91-101. doi:  10.1016/j.atmosres.2013.04.007
    Farmer D K, Cappa C D, Kreidenweis S. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chemical Reviews, 2015, 115: 1-49. doi:  10.1021/cr500685g
    Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161. doi:  10.1039/TF9363201152
    Drewnick F, Hings S, Decarlo P, et al. A new time-of-flight aerosol mass spectrometer(TOF-AMS)-Instrument description and first field deployment. Aerosol Science & Technology, 2005, 39: 637-658.
    Canagaratna M R, Jayne J T, Jimenez J L, et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26: 185-222. doi:  10.1002/mas.20115
    Ulbrich I M, Canagaratna M R, Zhang Q, et al. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys, 2009, 9: 2891-2918. doi:  10.5194/acp-9-2891-2009
    Drinovec L, Monik G, Zotter P, et al. The "dual-spot" Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, 8: 1965-1979. doi:  10.5194/amt-8-1965-2015
    Tian P, Liu D, Zhao D, et al. In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing. Atmos Chem Phys, 2020, 20: 2603-2622. doi:  10.5194/acp-20-2603-2020
    Liu P, Zhao C, Zhang Q, et al. Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B Chem Phys Meteor, 2009, 61: 756-767. doi:  10.1111/j.1600-0889.2009.00440.x
    Petters M D, Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys, 2007, 6: 8435-8456.
    Gysel M, Crosier J, Topping D O, et al. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos Chem Phys, 2007, 7: 6131-6144. doi:  10.5194/acp-7-6131-2007
    Wu Z J, Zheng J, Shang D J, et al. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos Chem Phys, 2016, 16: 1123-1138. doi:  10.5194/acp-16-1123-2016
    Park K, Kittelson D B, Zachariah M R, et al. Measurement of inherent material density of nanoparticle agglomerates. J Nanopart Res, 2004, 6: 267-272. doi:  10.1023/B:NANO.0000034657.71309.e6
    Kleinman L, Daum P H, Lee Y N, et al. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx. Atmos Chem Phys, 2012, 12: 207-223. doi:  10.5194/acp-12-207-2012
    Henning S, Weingartner E, Schmidt S, et al. Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl). Tellus B Chem Phys Meteor, 2002, 54: 82-95. doi:  10.3402/tellusb.v54i1.16650
    Mertes S, Lehmann K, Nowak A, et al. Link between aerosol hygroscopic growth and droplet activation observed for hill-capped clouds at connected flow conditions during FEBUKO. Atmos Environ, 2005, 39: 4247-4256. doi:  10.1016/j.atmosenv.2005.02.010
    Gillani N V, Schwartz S E, Leaitch W R, et al. Field observations in continental stratiform clouds: Partitioning of cloud particles between droplets and unactivated interstitial aerosols. J Geophys Res, 1995, 100: 18687-18706. doi:  10.1029/95JD01170
    Hudson J G, Noble S, Jha V. Stratus cloud supersaturations. Geophys Res Lett, 2010, 37, L2813.
  • 加载中
  • -->


    Figures(9)  / Tables(1)

    Article views (714) PDF downloads(88) Cited by()
    Proportional Views


    DownLoad:  Full-Size Img  PowerPoint