Wang Shuo, Zhang Dianguo, Wang Wenqing, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. DOI:  10.11898/1001-7313.20210604.
Citation: Wang Shuo, Zhang Dianguo, Wang Wenqing, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. DOI:  10.11898/1001-7313.20210604.

Aircraft Measurement of the Vertical Structure of a Weak Stratiform Cloud in Early Winter

DOI: 10.11898/1001-7313.20210604
  • Received Date: 2021-08-04
  • Rev Recd Date: 2021-10-11
  • Publish Date: 2021-11-23
  • In order to obtain the vertical microphysical structure of the stratiform cloud and characteristics of the radar parameters and reveal the precipitation mechanism, the airborne Ka-band cloud radar and DMT particle measurement system are used to target the stable precipitation layer of a cold front in Shandong Province on 17 November 2019. The results show that the observed cloud layer consists of two parts: Altostratus (As, 3100-4500 m) and nimbostratus (Ns, 800-2600 m). The content of As supercooled water is low, with an average value of 0.0026 g·m-3 and the maximum value of 0.008 g·m-3. The average ice crystal content in the cloud is 8.2 L-1. In the vertical space, the ice crystal size and spectral are different. Ice crystals grow through deposition, with a maximum diameter of 900 μm. In the state of equilibrium spectrum, the ice concentration has a good correlation with radar reflectivity, and the maximum correlation coefficient is 0.84. The movement of particles in the cloud is different. The speed of small particles varies greatly and is easily affected by updrafts. The falling speed of large-scale ice crystals is stable. The central part of the Ns (1750-2150 m) is rich in supercooled water, with the maximum content of 0.354 g·m-3. The average radar reflectivity of the supercooled water region is 7.48 dBZ, the Doppler velocity is -2.3 m·s-1, and the velocity spectral width is 0.7 m·s-1. The height of the supercooled water layer in the cloud can be comprehensively judged by combining a variety of detection data and parameters. The upper part of the Ns is dominated by ice crystals and the lower part is filled by melted particles in the warm zone. The average concentration of ice crystals is 208 L-1, which increases through the riming process, and the maximum diameter is 450 μm. The radar reflectivity profile increases as the height decreases from 2200 m to 1500 m, remains unchanged from 1500 m to 1200 m, and decreases below 1200 m. There is no obvious bright band at 0℃ level, and the velocity spectral width profile increases as the height decreases. The supercooled water in the stratiform cloud in early winter is abundant, and the concentration of ice crystals meets the standard of seeding area, which has a certain potential for rainfall enhancement.
  • Fig. 1  500 hPa geopotential height(the black contour, unit:dagpm), 500 hPa temperature(the yellow contour, unit:℃), 850 hPa wind(the barb) and 850 hPa relative humidity (the shaded) at 1400 BT 17 Nov 2019

    Fig. 2  Flight scheme

    Fig. 3  Radar reflectivity before(a) and after(b) correction over the target area on 17 Nov 2019

    Fig. 4  Vertical detection profile over the target area from 1412 BT to 1555 BT on 17 Nov 2019

    (a)temperature, (b)liquid water content, (c)ice concentration, (d)particle image

    Fig. 5  Particle spectral distribution at different altitudes over the target area on 17 Nov 2019

    Fig. 6  Radar reflectivity and cloud particle image of altostratus over the target area on 17 Nov 2019

    Fig. 7  Ice concentration and radar reflectivity of altostratus over the target area on 17 Nov 2019

    Fig. 8  Ice spectral distributions of altostratus over the target area on 17 Nov 2019

    Fig. 9  Doppler velocity distribution over the target area on 17 Nov 2019

    Fig. 10  Radar parameters of nimbostratus over the target area on 17 Nov 2019

    Fig. 11  Profile of radar parameter of nimbostratus over the target area on 17 Nov 2019 (a)radar reflectivity, (b)Doppler spectral width(the black box denotes spectral width increases sharply)

    Table  1  Cloud microphysical parameters from 1989 to 2019

    序号 日期 过冷水含量/(g·m-3) 冰晶浓度/L-1 样本量
    1 1989-09-10 0.034 10.5 5493
    2 1989-10-10 0.065 13.9 6854
    3 1992-09-28 0.002 7.8 6754
    4 2006-10-18 0.042 7.5 1961
    5 2007-10-12 0.041 13.7 2318
    6 2007-10-27 0.049 6.3 8850
    7 2008-09-19 0.093 15.4 3932
    8 2008-10-21 0.041 15.9 6883
    9 2018-10-25 10.2 6702
    10 2018-10-31 10.9 6136
    11 2019-10-24 0.012 10.6 4911
    12 2019-11-17 0.049 15.2 10316
    DownLoad: Download CSV
  • [1]
    Li Y C, Sun Y W, Cui F E. Analysis of the Macro and Microphysical Characteristics of Stratified Clouds in Autumn in the Central and Southern Part of Hebei Province//Proceedings of the 15th National Conference on Cloud Precipitation and Weather Modification(I). Beijing: China Meteorological Press, 2008: 321-324.
    Gu Z C. Physical Basis of Cloud and Precipitation. Beijing: Science Press, 1980: 173-179.
    Zhao S X, Chen W H, Hang H Z. Analysis on precipitation altostratus microphysical structure in spring over north-east Qinghai. Plateau Meteorology, 2002, 21(3): 281-287. doi:  10.3321/j.issn:1000-0534.2002.03.009
    Yan C F, Chen W K. The stratus cloud droplet number/size distributions and spectral parameters calculation. J Appl Meteor Sci, 1990, 1(4): 352-359.
    You L G, Wu D. Liquid water content and precipitation conditions in stratiform clouds. Meteor Mon, 1981, 7(3): 20-21.
    You L G, Xiong G Y, Gao M R, et al. The formation of ice crystals and the growth characteristics of snow crystals in the layered cold cloud in Jilin area in spring. Acta Meteor Sinica, 1965, 23(4): 423-433.
    Sun K F, You L G. Ice crystals and snow crystals in the precipitation layered cold cloud in Jilin area from April to June 1963. Acta Meteor Sinica, 1965, 23(3): 265-272.
    Wang H Q, Zhao G X. The influences of cloud microphysical parameters on cloud optical and radiative properties. J Appl Meteor Sci, 1996, 7(1): 36-44.
    Zhang G D. Parameterization of shortwave radiation properties of ice cloud. J Appl Meteor Sci, 1997, 8(3): 283-291.
    Yang J, Chen B J, Yin Y, et al. Physical of Clouds and Precipitation. Beijing: China Meteorological Press, 2011.
    Deng Y P, Dong X B, Lv F, et al. Macro and microphysical characters of precipitable stratiform cloud over Hebei Province. Journal of Meteorology and Environment, 2013, 29(3): 29-34. doi:  10.3969/j.issn.1673-503X.2013.03.005
    Feng Q J, Li P R, Hou T J, et al. Microphysical characteristics of spring precipitation cold stratiform clouds in Shanxi Province. Trans Atmos Sci, 2014, 37(4): 449-458.
    Wang W J, Dong X B, Shi L X, et al. Study on vertical microphysical structure of cloud for a multi-layer cloud system. Plateau Meteorology, 2011, 30(5): 1368-1375.
    Chen W K, Ma P M. The microphysical characteristics and the mechanism of the precipitation of the stratiform cloud in Sichuan Province in spring. J Academy Meteor Sci, 1986, 1(1): 53-58.
    Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32.
    Li Z R, Li R Q, Li B Z. Analyses on vertical microphysical characteristics of autumn stratiform cloud in Lanzhou region. Plateau Meteorology, 2003(6): 583-589. doi:  10.3321/j.issn:1000-0534.2003.06.008
    Li Z R, Li B Z, Pang C Y, et al. The characteristic of ice-snow crystals of straitiform-type clouds in autumn in Gansu Province. Gansu Meteorology, 2002(3): 21-23.
    Wang Y F, Lei H C, Fan P, et al. Analyses on microphysical characteristic and precipitation mechanism on stratiform cloud in Yan'an. Plateau Meteorology, 2007, 26(2): 388-395. doi:  10.3321/j.issn:1000-0534.2007.02.022
    Zhang D G, Guo X L, Fu D H, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August-September 2003. Chinese J Atmos Sci, 2007, 31(4): 596-610.
    Li Y Z, Li M L, Li W, et al. Stepwise discrimination analysis of potential areas for rain enhancement in stratiform clouds in north China. J Appl Meteor Sci, 2003, 14(4): 430-436.
    Sun H, Liu L P, Zheng J F. Comparisons of Doppler spectral density data by different bands pointing vertically radars. J Appl Meteor Sci, 2017, 28(4): 447-457. doi:  10.11898/1001-7313.20170406
    Kropfli R A, Kelly R D. Meteorological research applications of mm-wave radar. Meteor Atmos Phys, 1996, 59(1/2): 105-121.
    Tang Y J, Ma S Q, Yang L, et al. Observation and comparison of cloud-base heights by ground-based millimeter-wave cloud radar. J Appl Meteor Sci, 2015, 26(6): 680-687. doi:  10.11898/1001-7313.20150604
    Zeng Z M, Zheng J F, Yang H, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. doi:  10.11898/1001-7313.20210307
    Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi:  10.11898/1001-7313.20200607
    Shupe M D. A ground-based multisensor cloud phase classifier. Geophy Res Lett, 2007, 34(22): 48-55.
    Frisch A S, Fairall C W, Snider J B. Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J Atmos Sci, 1995, 52(16): 2788-2799.
    Huang Y M, Zhou Y Q, Yang M. Using 3 mm cloud radar data to analyze frontal mixed cloud vertical structure and supercooled water. Plateau Meteorology, 2017, 36(1): 219-228.
    Zhang L Y, Feng G L. Study of the microphysical structure and seedable conditions of stratiform clouds in spring and fall. Meteor Mon, 1997, 23(5): 4-8.
    Wang C S. Conceptual characteristics of cloud physics of precipitation system in Shandong Province in spring and autumn. Shandong Meteorology, 1994(4): 8-12.
    Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207
    Wang S, Zhang D G, Guo X L, et al. Research on correlation between reflectivity and liquid water content around the 0℃ layer in the clouds by airborne detection equipments. Journal of Marine Meteorology, 2020, 40(2): 103-112.
    Zhang D G, Wang S, Guo X L, et al. The properties of convective generating cells embedded in the stratiform cloud on basis of air-borne Ka-band precipitation cloud radar and droplet measurement technologies. Chinese J Atmos Sci, 2020, 44(5): 1023-1038.
    Sun H P, Li P R, Yan S M, et al. A study of microphysical characteristics and seedability of cold stratiform clouds in North China. Meteor Mon, 2011, 37(10): 1252-1261.
    Shi A L. Progress in researches on microphysical characteristics and precipitation mechanisms of stratiform cloud precipita-tion. Meteorological Science and Technology, 2005, 33(2): 104-108.
    McFarquhar G M, Cober S G. Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J Climate, 2004, 17(19): 3799-3813.;jsessionid=89DA8D4B5CF1B2266FE5D4047E83CBDD?doi=
    McFarquhar G M. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J Geophys Res Atmos, 2007, 112(D24201): 1-19.
    Zhang D G, Guo X L, Gong D L, et al. The observation results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteor Sinica, 2011, 69(1): 195-207.
    Plummer D M, McFarquhar G M, Rauber R M, et al. Structure and statistical analysis of the microphysical properties of the micro-physical properties of generating cells in the comma head region of continental winter cyclones. J Atmos Sci, 2015, 71(11): 4181-4203.
    Hodson M C. Raindrop size distribution. J Climate Appl Meteor, 1986, 25(7): 1793-1806.
    Roland L. A linear radar reflectivity-rainrate relationship for steady tropical Rain. J Atmos Sci, 1988, 45(23): 3564-3572. doi:  10.1175/1520-0469(1988)045<3564%3AALRRRF>2.0.CO%3B2
    Wu J X, Wei M, Huang L, et al. Back scattering and attenuation of non-spherical ice crystals with 94 GHz millimeter-wavelength. Journal of the Meteorological Sciences, 2016, 36(1): 63-70.
    Wang J H, Ge J X, Wei M, et al. A study of the relationship between IWC and Z for non-spherical ice particles at millimeter wave-length. Journal of Tropical Meteorology. 2016, 32(2): 246-255.
    Sassen K, Matrosov S, Campbell J. CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation driven up-side-down lidar analog. Geophys Res Lett, 2007, 34(16): L16818. doi:  10.1029/2007GL030291/pdf
    Wu J X, Wei M, Zhou J. Echo and capability analysis of 94 GHz cloud radars. Acta Meteor Sinica, 2014, 72(2): 402-416.
    Shupe M D, Intrieri J M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J Climate, 2004, 17(3): 616-628.
    Shupe M D, Matrosov S Y, Uttal T. Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J Atmos Sci, 2006, 63(2): 697-711.
  • 加载中
  • -->


    Figures(11)  / Tables(1)

    Article views (626) PDF downloads(115) Cited by()
    Proportional Views


    DownLoad:  Full-Size Img  PowerPoint