Chang Yi, Guo Xueliang, Tang Jie, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. DOI:  10.11898/1001-7313.20210607.
Citation: Chang Yi, Guo Xueliang, Tang Jie, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. DOI:  10.11898/1001-7313.20210607.

Microphysical Characteristics and Precipitation Formation Mechanisms of Convective Clouds over the Tibetan Plateau in Summer

DOI: 10.11898/1001-7313.20210607
  • Received Date: 2021-07-12
  • Rev Recd Date: 2021-08-10
  • Publish Date: 2021-11-23
  • Tibetan Plateau (TP) has high impact on weather, climate, and water cycle of China, and it also affects the flood and drought in south China by modulating the onset and retreat of the Asian monsoon. However, owning to the lack of direct observations, the knowledge of microphysical characteristics and mechanisms inside the clouds over TP is still seriously lacking. During the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-Ⅲ), field observations is carried out in the summer of 2014, which employed ground-based and airborne instruments. By using the aircraft measurements collected during the TIPEX-Ⅲ, the microphysical characteristics and precipitation formation mechanisms of summertime clouds are studied. The results show that clouds detected by the aircraft are mainly newly born or developing mixed-phase convective clouds, as well as some residual clouds. The maximum and average concentrations of cloud drops are 1.1×105 L-1 and (9±10)×103 L-1, respectively, and the order of magnitude is 104 L-1, which is lower than clouds of plain and maritime regions by 1-2 orders. The maximum concentration for larger cloud particles is 28.82 L-1, and the order of magnitude is 100-101 L-1, which is also lower than other regions. The maximum liquid and total water content are 0.25 g·m-3 and 1.33 g·m-3, respectively, and the order of magnitude is 10-1-100 g·m-3, with abundant supercooled liquid water content in the clouds. The uplifting velocity distributes mainly in the range of 1-4 m·s-1 with a maximum of 4.3 m·s-1, indicating the convective clouds over the TP are weaker than other regions. The cloud drop size distributions (DSD) are mostly bimodal with different second peaks at the larger end, and some of the DSDs are unimodal, which are mainly found in newly borne clouds. There are more large cloud drops and drizzles in the clouds over the TP, which is the result of active warm rain processes. And the ice particles mainly consist of opaque and dense graupels as well as some needles and plates, indicating active rimming processes. The warm rain processes do not generate rain directly, but contribute to the subsequent glaciation and rimming processes, leading to the quick formation of precipitation over the TP. The residual clouds show similar ice characteristics with convective clouds, but much drier and weaker, and they also maintain small amount of supercooled liquid water.
  • Fig. 1  Observation field of TIPEX-Ⅲ at Naqu during summer of 2014

    (the red rectangle indicates the region of aircraft measurements, × and + are two observation sites at Naqu Meteorological Bureau and Naqu Zhongxin Hotel)

    Fig. 2  Aircraft observations of newly born convective cells on 3 Jul 2014 (a)cloud liquid water content and total water content derived from Nevzorov, (b)cloud particle number concentration (the black solid line) and drop size distribution (the shaded) derived from FCDP

    (A1, A2, and A3 represent 3 penetrations of the same cells while B1 denotes a different cell)

    Fig. 3  Aircraft measurements of developing convective clouds on 10 Jul 2014 (a)altitude and air temperature of the flight measurement procedure, (b)LWC, (c)concentration of large particles derived from HVPS, (d)concentration of small particles derived from FCDP, (e)cloud drop size distributions of the sampled periods shown in Fig. 3d

    Fig. 4  Aircraft measurements of developing convective clouds on 13 Jul 2014 (a)altitude and temperature (the solid line) and reflectivity (the shaded) of C-band operational radar along the flight trajectory, (b)LWC and TWC retrieved from Nevzorov, (c)concentration of large particles derived from HVPS, (d)concentration of small particles derived from FCDP

    Fig. 5  Particle images of different altitudes on 13 Jul 2014

    Fig. 6  Particle size distributions of convective clouds obtained by FCDP at typical temperatures for cases on 3, 10, 13 Jul in 2014

    (all particle size distributions refer to convective clouds with only supercooled liquid water)

    Fig. 7  Height-time distributions of radar defectivities of residual clouds and altitude of flight trajactories

    (red lines represent altitude of flight)

    Fig. 8  Results of residual cloud case on 20 Jul 2014 (a)LWC and TWC obtained by Nevzorov, (b)concentrations and spectra obtained by 2D-S, (c)concentrations and spectra obtained by HPVS, (d)concentrations and spectra obtained by FCDP

    Table  1  Flight altitudes, temperatures, and cloud types of six cases during TIPEX-Ⅲ, 2014

    日期 飞行高度/m 温度/℃ 云类型
    07-03 5728~7634 -11.7~-1.0 初始对流云
    07-10 6286~6954 -6.6~-2.4 发展阶段对流云
    07-13 6293~7959 -13.1~-2.4 发展阶段对流云
    07-20 6279~8933 -17.1~-2.1 残留云系
    07-21 6278~8938 -17.3~-2.4 残留云系
    07-24 6280~8145 -14.8~-4.4 发展阶段对流云
    DownLoad: Download CSV

    Table  2  Maximum, average and order of magnitude values of cloud particle concentrations with D < 50 μm and D≥50 μm and LWC, TWC and V values during the TIPEX-Ⅲ

    统计项目 小云粒子数浓度/L-1 大云粒子数浓度/L-1 LWC/(g·m-3) TWC/(g·m-3) V/(m·s-1)
    最大值 1.1×105 28.82 0.25 1.33 4.3
    最小值 (9±10)×103 (7±19)×10-1
    数量级 104 100~101 10-1~100 10-1~100 1~4
    DownLoad: Download CSV
  • [1]
    Qiu J. China: The third pole. Nature, 2008, 454: 393-396. doi:  10.1038/454393a
    Xu X, Lu C, Shi X, et al. World water tower: An atmospheric perspective. Geophys Res Lett, 2008, 35(20): L035867.
    Xu X, Dong L, Zhao Y, et al. Effect of the Asian water tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin Sci Bull, 2019, 64(27): 2830-2841.
    Chen L, Zhao J, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    Wang C, Gao S, Ran L, et al. Effects of topographic perturbation on the precipitation distribution in Sichuan. J Appl Meteor Sci, 2019, 30(5): 586-597. doi:  10.11898/1001-7313.20190507
    Wei W, Zhang R, Wen M. Meridional variation of South Asian high and its relationship with the summer precipitation over China. J Appl Meteor Sci, 2012, 23(6): 650-659.
    Luo H, Yanai M. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ: Heat and moisture budgets. Mon Wea Rev, 1984, 112(5): 966-989. doi:  10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2
    Luo H, Yanai M. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon Wea Rev, 1983, 111(5): 922-944. doi:  10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2
    Xu X, Chen L. Advances of the study on Tibetan Plateau experiment of atmospheric sciences. J Appl Meteor Sci, 2006, 17(6): 756-772. doi:  10.3969/j.issn.1001-7313.2006.06.013
    Xu X, Zhou M, Chen J, et al. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. Sci China(Earth Sci), 2001, 31(5): 428-440.
    Chen X, Ael J A, Su Z, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. Plos One, 2013, 8(2): e56909. doi:  10.1371/journal.pone.0056909
    Xu X, Tao S, Wang J, et al. The relationship between water vapor transport features of Tibetan Plateau-monsoon "large triangle" affecting region and drought-flood abnormality of China. Acta Meteor Sinica, 2002, 60(3): 257-266.
    Ye D, Gao Y. Meteorology of the Qinghai-Xizang Plateau. Beijing: Science Press, 1979.
    Liu L, Feng J, Chu R, et al. The diurnal variation of precipitation in monsoon season in the Tibetan Plateau. Adv Atmos Sci, 2002, 19(2): 365-378. doi:  10.1007/s00376-002-0028-6
    Ueno K, Fujii H, Yamada H, et al. Weak and frequent monsoon precipitation over the Tibetan Plateau. J Meteorol Soc Jpn Ser Ⅱ, 2001, 79(1B): 419-434. doi:  10.2151/jmsj.79.419
    Meng Q, Fan P, Zheng D, et al. Relationships between cloud-to-ground lightning and radar parameters at Naqu of the Qinghai-Tibet Plateau. J Appl Meteor Sci, 2018, 29(5): 524-533. doi:  10.11898/1001-7313.20180502
    Zhao P, Yuan Y. Characteristics of a plateau vortex precipitation event on 14 July 2014. J Appl Meteor Sci, 2017, 28(5): 532-543. doi:  10.11898/1001-7313.20170502
    Chang Y, Guo X. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chin Sci Bull, 2016, 61(15): 1706-1720.
    Fujinami H, Yasunari T. The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau. J Meteorol Soc Jpn Ser Ⅱ, 2001, 79(6): 1207-1227. doi:  10.2151/jmsj.79.1207
    Fujinami H, Nomura S, Yasunari T. Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. SOLA, 2005, 1: 49-52. doi:  10.2151/sola.2005-014
    Fu Y, Liu Q, Zi Y, et al. Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements. Plateau and Mountain Meteorology Research, 2008, 28(1): 8-18. doi:  10.3969/j.issn.1674-2184.2008.01.002
    Yasunari T, Miwa T. Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the Meiyu/Baiu frontal zone-A case study in 1998. J Meteorol Soc Jpn Ser Ⅱ, 2006, 84(4): 783-803. doi:  10.2151/jmsj.84.783
    Zhao Y, Xu X, Liu L, et al. Effects of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River Basin. Atmos Res, 2019, 219: 24-35. doi:  10.1016/j.atmosres.2018.12.019
    Hu L, Xu X, Zhao P. A study of the meteorological background of convective systems over the Tibetan Plateau. Acta Meteor Sinica, 2018, 76(6): 114-124.
    Dai Y, Li D, Wang H. A new index for surface sensible heat flux over the Tibetan Plateau and its possible impacts on the rainfall in South China. J Appl Meteor Sci, 2017, 28(2): 157-167. doi:  10.11898/1001-7313.20170203
    Uyeda H, Yamada H, Horikomi J, et al. Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J Meteorol Soc Jpn Ser Ⅱ, 2001, 79(1B): 463-474. doi:  10.2151/jmsj.79.463
    Liu L, Chu R, Song X, et al. Summary and preliminary results of cloud and precipitation observation in Qinghai-Xizang Plateau in GAME-TIBET. Plateau Meteorology, 1999, 18(3): 441-450. doi:  10.3321/j.issn:1000-0534.1999.03.021
    Kurosaki Y, Kimura F. Relationship between topography and daytime cloud activity around Tibetan Plateau. J Meteorol Soc Jpn Ser Ⅱ, 2002, 80(6): 1339-1355. doi:  10.2151/jmsj.80.1339
    Fu Y, Liu G, Wu G, et al. Tower mast of precipitation over the central Tibetan Plateau summer. Geophys Res Lett, 2006, 33: L05802.
    Luo Y, Zhang R, Qian W, et al. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO Data. J Climate, 2011, 24(8): 2164-2177. doi:  10.1175/2010JCLI4032.1
    Porcù F, D'Adderio L P, Prodi F, et al. Rain drop size distribution over the Tibetan Plateau. Atmos Res, 2014, 150: 21-30. doi:  10.1016/j.atmosres.2014.07.005
    Porcù F, D'Adderio L P, Prodi F, et al. Effects of altitude on maximum raindrop size and fall velocity as limited by collisional breakup. J Atmos Sci, 2013, 70(4): 1129-1134. doi:  10.1175/JAS-D-12-0100.1
    Chen B, Hu Z, Liu L, et al. Raindrop size distribution measurements at 4, 500 m on the Tibetan Plateau during TIPEX-Ⅲ. J Geophys Res Atmos, 2017, 122(20): 11092-11106. doi:  10.1002/2017JD027233
    Fu Y, Li H, Zi Y. Case study of precipitation cloud structure viewed by TRMM satellite in a Valley of the Tibetan Plateau. Plateau Meteorology, 2007, 26(1): 98-106. doi:  10.3321/j.issn:1000-0534.2007.01.012
    Wang H, Luo Y, Zhang R. Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data. Chinese J Atmos Sci, 2011, 35(6): 1117-1131. doi:  10.3878/j.issn.1006-9895.2011.06.11
    Li D, Bai A, Xue Y, et al. Comparative analysis on characteristics of summer convective precipitation over Tibetan Plateau and Sichuan Basin. Meteor Mon, 2014, 40(3): 280-289.
    Chen L, Zhou Y. Different physical properties of summer precipitation clouds over Qinghai-Xizang Plateau and Sichuan Basin. Plateau Meteorology, 2015, 34(3): 621-632.
    Tang J, Guo X, Chang Y. Numerical studies on microphysical properties of clouds and precipitation in the summer of 2014 over the Tibetan Plateau. Acta Meteor Sinica, 2018, 76(6): 223-238.
    Tang J, Guo X, Chang Y. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau. Chinese J Atmos Sci, 2018, 42(6): 1327-1343.
    Fu Y, Liu G. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J Appl Meteor Climatol, 2007, 46(5): 667-672. doi:  10.1175/JAM2484.1
    Gao W, Liu L Li J, et al. The microphysical properties of convective precipitation over the Tibetan Plateau by a subkilometer resolution cloud-resolving simulation. J Geophys Res Atmos, 2018, 123(6): 3212-3227. doi:  10.1002/2017JD027812
    Gao W, Sui C, Fan J, et al. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. J Geophys Res Atmos, 2016, 121(22): 13735-13752. doi:  10.1002/2015JD024196
    Guo X, Fang C, Lu G, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    Zhao P, Xu X, Chen F, et al. The Third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bull Amer Meteor Soc, 2018, 99(4): 757-776. doi:  10.1175/BAMS-D-16-0050.1
    Ren S, Fang X, Lu N, et al Recognition method of the Tibetan Plateau vortex based on meteorological satellite data. J Appl Meteor Sci, 2019, 30(3): 345-359. doi:  10.11898/1001-7313.20190308
    Lawson R P, Woods S, Morrison H. The microphysics of ice and precipitation development in tropical cumulus clouds. J Atmos Sci, 2015, 72(6): 2429-2445. doi:  10.1175/JAS-D-14-0274.1
    Baker B A, Lawson R P. In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part Ⅰ: Wave clouds. J Atmos Sci, 2006, 63(12): 3160-3185. doi:  10.1175/JAS3802.1
    Hobbs P V. The nature of winter clouds and precipitation in the cascade mountains and their modification by artificial seeding. Part Ⅰ: Natural conditions. J Appl Meteor Sci, 1975, 14(5): 783-804. doi:  10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2
    Hobbs P V. The nature of winter clouds and precipitation in the cascade mountains and their modification by artificial seeding. Part Ⅲ: Case studies of the effects of seeding. J Appl Meteor Sci, 1975, 14(5): 819-858. doi:  10.1175/1520-0450(1975)014<0819:TNOWCA>2.0.CO;2
    Sun H, Li P, Yan S, et al. Analysis of cloud physical characteristics and precipitation mechanisms in stratiform cloud development stage. Chinese Agricultural Science Bulletin, 2015, 31(18): 179-193. doi:  10.11924/j.issn.1000-6850.casb14110044
    Hobbs P V, Rangno A L. Ice particle concentrations in clouds. J Atmos Sci, 1985, 42(23): 2523-2549. doi:  10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2
    Yum S S, Hudson J G. Microphysical relationships in warm clouds. Atmos Res, 2001, 57(2): 81-104. doi:  10.1016/S0169-8095(00)00099-5
    Albrecht B A, Bretherton C S, Johnson D, et al. The Atlantic stratocumulus transition experiment-ASTEX. Bull Amer Meteor Soc, 1995, 76(6): 889-904. doi:  10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2
    Knight C A, Miller L J. Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J Atmos Sci, 1998, 55(18): 2974-2992. doi:  10.1175/1520-0469(1998)055<2974:EREFSW>2.0.CO;2
    Zhu S, Guo X. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements. Acta Meteor Sinica, 2014, 72(2): 366-389.
    Zhu S, Guo X, Lu G, et al. Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in northern China. J Atmos Sci, 2015, 72(5): 2011-2032. doi:  10.1175/JAS-D-14-0194.1
    Li L, De L. Analyses of microphysical features for spring precipitation cloud layers in east of Qinghai. Plateau Meteorology, 2001, 20(2): 191-196. doi:  10.3321/j.issn:1000-0534.2001.02.013
    Wang L, Yin Y, Li L, et al. Analyses on typical autumn multi-layer stratiform clouds over the Sanjiangyuan National Nature Reserve with airborne observations. Chinese J Atmos Sci, 2013, 37(5): 1038-1058.
    Fan Y, Guo X, Zhang D, et al. Airborne particle measuring system measurement on structure and size distribution of stratocumulus during August to September in 2004 over Beijing and its surrounding areas. Chinese J Atmos Sci, 2010, 34(6): 1187-1200. doi:  10.3878/j.issn.1006-9895.2010.06.12
    Boers R, Jensen J B, Krummel P B. Microphysical and short-wave radiative structure of stratocumulus clouds over the southern ocean: Summer results and seasonal differences. Quart J Roy Meteor Soc, 1998, 124(545): 151-168. doi:  10.1002/qj.49712454507
    Rangno A L, Hobbs P V. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart J Roy Meteor Soc, 2005, 131(606): 639-673. doi:  10.1256/qj.04.13
    Rauber R M, Grant L O. The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part Ⅱ: Spatial distribution and microphysical characteristics. J Appl Meteor Climatol, 1986, 25(4): 489-504. doi:  10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2
    Lawson P, Gurganus C, Woods S, et al. Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a "new" secondary ice process. J Atmos Sci, 2017, 74(9): 2899-2920. doi:  10.1175/JAS-D-17-0033.1
    Bailey M, Hallett J. Growth rates and habits of ice crystals between -20° and -70℃. J Atmos Sci, 2004, 61(5): 514-544. doi:  10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2
    Bailey M P, Hallett J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS Ⅱ, and other field studies. J Atmos Sci, 2009, 66(9): 2888-2899. doi:  10.1175/2009JAS2883.1
  • 加载中
  • -->


    Figures(8)  / Tables(2)

    Article views (1342) PDF downloads(182) Cited by()
    • Received : 2021-07-12
    • Accepted : 2021-08-10
    • Published : 2021-11-23


    DownLoad:  Full-Size Img  PowerPoint