He Lifu, Chyi Dorina, Yu Wen. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. DOI:  10.11898/1001-7313.20220401.
Citation: He Lifu, Chyi Dorina, Yu Wen. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. DOI:  10.11898/1001-7313.20220401.

Development Mechanisms of the Yellow Sea and Bohai Sea Cyclone Causing Extreme Snowstorm in Northeast China

DOI: 10.11898/1001-7313.20220401
  • Received Date: 2022-04-02
  • Rev Recd Date: 2022-05-18
  • Publish Date: 2022-07-13
  • The structure evolution and explosive development mechanisms of the Yellow Sea and Bohai Sea cyclone causing the extreme snow in Northeast China from 7 November to 9 November in 2021 are analyzed with high-resolution observations and the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis data (ERA5) with a 0.25° by 0.25° spatial resolution. Results show that the extreme snowstorm occurs under the background of high-altitude cold vortex collocated with surface cyclone. After the formation of the surface cyclone in the Yellow Sea, it strengthens rapidly and moves northward along the eastern part of Northeast China. The snowfall area is mainly distributed on the west side of the cyclone, and the snowfall intensity is closely related to the occurrence and development of the surface cyclone. Its explosive development stage corresponds to the strongest period of the extreme blizzard process. The Yellow Sea and Bohai Sea cyclone is generated from a ground inverted trough which gradually strengthens with eastward shift into the sea. During its explosive developing and occluding stages, the leaf cloud system evolved into hook comma cloud system and vortex cloud system. The horizontal structure shows frontal fracture and the warm front back bending and wrapping, while the vertical structure shows high-altitude frontal fracture, the emergence of dry and warm center, the formation of neutral occluded front, and deep low value system from inclined vortex column. Wave activity flux analysis shows that the ridge in Siberian, the trough in North China and the ridge in Northeast China at 500 hPa devote to Rossby wave train. With the continuous eastward movement and the wave energy dispersion downstream of the positive anomaly center in the upper reaches of Siberia, the wave activity flux from the northwest in the North China trough is rapidly enhanced, and therefore the cold vortex enhances rapidly. The sharp enhancement of vorticity factor over surface cyclones is beneficial to the explosive development of cyclones. The potential vorticity diagnosis on the isobaric surface shows that the abnormal area of positive potential vorticity gradually approaches and superimposes on the middle and low-level system, with the continuous southward development and downward propagation of stratospheric high-level vorticity along the isentropic surface, resulting in the rapid development and downward extension of middle-level cold vorticity and thereby the explosive enhancement of surface cyclones. In addition, the slow downward propagation of potential vorticity is also conducive to the maintenance of occluding stage in the frontal cyclone.
  • Fig. 1  The accumulative precipitation from 0800 BT 6 Nov to 0800 BT 9 Nov in 2021(the shaded)(a), the snowfall depth at 0800 BT 9 Nov 2021(the shaded)(b)

    (the black dot denotes the location of Tongliao Station, the same hereinafter)

    Fig. 2  500 hPa geopotential height(the solid line, unit:dagpm), sea level pressure(the dashed line, unit:hPa) and corresponding 12 h accumulative precipitation(the shaded) from 7 Nov to 8 Nov in 2021

    Fig. 3  Path of extratropical cyclone and stations with 6 h accumulative maximum precipitation(a) and sea level pressure in cyclone center and 6 h maximum precipitation(b) from 1400 BT 7 Nov to 0800 BT 9 Nov in 2021

    Fig. 4  TBB(the shaded) of the Yellow Sea and Bohai Sea cyclone observed by FY-4A from 1400 BT 7 Nov to 0800 BT 9 Nov in 2021

    Fig. 5  850 hPa wind(the vector) and temperature(the dashed line, unit:℃), sea level pressure (the solid line, unit:hPa) from 2000 BT 7 Nov to 2000 BT 8 Nov in 2021

    (the thick black line denotes the front)

    Fig. 6  Cross-section of vorticity(the shaded) and vertical velocity(the dotted line, unit:Pa·s-1) along 850 hPa vortex center from 7 Nov to 9 Nov in 2021

    (△ denotes the longitude of 850 hPa vortex center, the same hereinafter)

    Fig. 7  Cross-section of temperature(the dashed line, unit:℃) and relative humility(the gray) along 850 hPa vortex center from 7 Nov to 9 Nov in 2021

    (black bold lines denote trough and ridge of temperature contours)

    Fig. 8  500 hPa geopotential height(the solid line, unit:dagpm) with its anomaly(the shaded) and wave-activity fluxes(the vector) from 1400 BT 7 Nov to 0800 BT 9 Nov in 2021

    Fig. 9  Cross-section of potential vorticity along 850 hPa vortex center from 7 Nov to 9 Nov in 2021(the shaded)

  • [1]
    Bosart L F, Lin S C. A diagnostic analysis of the President' Day storm of February 1979.Mon Wea Rev, 1984, 112(11):2148-2177. doi:  10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2
    [2]
    Braham R R Jr. The midwest snow storm of 8-11 December 1977. Mon Wea Rev, 1983, 111(2): 253-272. doi:  10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2
    [3]
    Sanders F, Gyakum J R. Synoptic dynamic climatology of the "Bomb". Mon Wea Rev, 1980, 108(10): 1589-1606. doi:  10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
    [4]
    Ninomiya K. Polar low development over the east coast of Asian continent on 9-11 December 1985. J Meteor Soc Japan, 1991, 69(6): 669-685. doi:  10.2151/jmsj1965.69.6_669
    [5]
    Sun J H, Zhao S X. Multi-scale systems and conceptual model on freezing rain and snow storm over southern China during January-February 2008. Climatic and Environmental Research, 2008, 13(4): 368-384. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200804003.htm
    [6]
    Ye C, Wang J J, Zhang W L. Formation mechanism of the snowstorm over Beijing in early winter of 2009. J Appl Meteor Sci, 2011, 22(4): 398-410. doi:  10.3969/j.issn.1001-7313.2011.04.002
    [7]
    Li J, Zhao S X, Sun J H. Analysis of a record heavy snowfall event in North China. Climatic and Environmental Research, 2017, 22(6): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201706004.htm
    [8]
    Yang G M, Mao D Y, Kong Q. Analysis of the frontal characteristics of the cryogenic freezing rain and snow weather. Acta Meteor Sinica, 2009, 67(4): 652-665. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200904015.htm
    [9]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [10]
    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [11]
    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [12]
    Luo H, Xiao D X, Kuang Q M, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. doi:  10.11898/1001-7313.20200408
    [13]
    Zhang Y X, Hou R Q, Zhang S B. Numerical experiment and disgnosis on a heavy snow of return flow events. Meteor Mon, 2007, 33(9): 25-32. doi:  10.3969/j.issn.1000-0526.2007.09.004
    [14]
    Wang Y C, Qian T T, Zheng Y G. Primary analysis of the longest-lasting snowfall in Beijing. J Appl Meteor Sci, 2004, 15(1): 58-65. doi:  10.3969/j.issn.1001-7313.2004.01.007
    [15]
    Jiang J Y, Shi L, Ni Y Q. A simulation of a high impact weather event. J Appl Meteor Sci, 2005, 16(2): 231-237. doi:  10.3969/j.issn.1001-7313.2005.02.012
    [16]
    Yang C F, Li Z C, Zhou B, et al. Mesoscale analysis of ocean-effect snowstorms in the south coastland of Bohai Sea. Journal of Nanjing Institute of Meteorology, 2007, 30(6): 857-865. doi:  10.3969/j.issn.1674-7097.2007.06.018
    [17]
    Yu Z L. The relation between cold flow snowfall and sea-air sensible heat transportation in Jiaodong Peninsula. Acta Meteor Sinica, 1998, 56(1): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB801.011.htm
    [18]
    Zhou S L, Cong M H, Wu Z M, et al. Characteristics and maintaining mechanisms of sustained cold-air outbreak snowstorm processes in Shandong Peninsula during December 3-21, 2005. J Appl Meteor Sci, 2008, 19(4): 444-453. doi:  10.3969/j.issn.1001-7313.2008.04.008
    [19]
    Cui Y S, Zhang F Q, Li J H, et al. The analyses of three snowstorm processes on Shandong Peninsula in 2005. J Meteor Sci, 2008, 28(4): 395-401. doi:  10.3969/j.issn.1009-0827.2008.04.007
    [20]
    Wang W, Cheng L S. Numerical study of transversal wave instability for the "96.1" snowstorm event. J Appl Meteor Sci, 2000, 11(4): 392-399. doi:  10.3969/j.issn.1001-7313.2000.04.002
    [21]
    Wang J Z, Ding Y H. Research of moist symmetric instability in a strong snowfall in North China. Acta Meteor Sinica, 1995, 53(4): 451-459. doi:  10.3321/j.issn:0577-6619.1995.04.003
    [22]
    Chen T, Cui C X. The frontal structure and precipitation mechanism in the 6 January 2010 heavy snowfall event happening in North Xinjiang. Meteor Mon, 2012, 38(8): 921-931. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201208006.htm
    [23]
    Sheng C Y, Yang X X. Symmetry instability analysis of an unusual storm snow in Shandong Province. Meteor Mon, 2002, 28(3): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200203007.htm
    [24]
    Zhang T F, Lu Y B, Zhang J, et al. Contrast analysis of 4 heavy snow events in Yunnan since 2000. J Appl Meteor Sci, 2007, 18(1): 64-72. doi:  10.3969/j.issn.1001-7313.2007.01.009
    [25]
    Fan J H, Yi X Y. Comparative analysis of several influencing systems in the process of alarge-scale continuous snowstorm. Acta Meteor Sinica, 2019, 77(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201906001.htm
    [26]
    Wang L R, Tang D Z, Hu Z Q, et al. The Doppler radar velocity image features and its application in a snowfall process. J Appl Meteor Sci, 2006, 17(4): 452-458. doi:  10.3969/j.issn.1001-7313.2006.04.009
    [27]
    Chi Z P, Gong D L. A numerical simulation of cloud microphysics parameters for sustaining snowfall in Shandong Province. Meteor Mon, 2006, 32(7): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607003.htm
    [28]
    Sun J, Wang P Y, Li X, et al. Numerical study on microphysical processes of two different snowfall cases in North China. Acta Meteor Sinica, 2007, 65(1): 29-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200701002.htm
    [29]
    Wang H Q, Zhang Y, Tao Z Y, et al. Visualization of the numerical simulation of a Yellow Sea cyclone. J Appl Meteor Sci, 2000, 11(3): 282-286. http://qikan.camscma.cn/article/id/20000343
    [30]
    Zhang W, Tao Z Y, Hu Y Y, et al. A study on the dry intrusion of air flows from the lower stratosphere in a cyclone development. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200601011.htm
    [31]
    Wang D W. An inverted warm front along the east coast of East Asia. Meteor Mon, 1975, 1(10): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197510002.htm
    [32]
    Xiong Q F, Zhang Y T, Jiang X F, et al. Analysis of moisture source and transport of snowstorm in hooked cloud area of an occluded cyclone. Meteor Mon, 2018, 44(10): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201810003.htm
    [33]
    Cai L N, Sui Y J, Liu D Q, et al. Analysis on an unusual snowstorm event caused by explosive cyclone. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(4): 693-700. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200904026.htm
    [34]
    Liu N W, Qi L L, Han J W. The analyses of an unusual snowstorm caused by the northbound vortex over Liaoning Province in China. Chinese J Atmos Sci, 2009, 33(2): 275-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200902007.htm
    [35]
    Zhao Y, Zhu H Q, Lan X, et al. Structure of the snow storm cloud associated with northward Jianghuai cyclone based on CloudSat satellite data. Chinese J Geophys, 2018, 61(12): 4789-4804. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812007.htm
    [36]
    Wang D H, Duan Y H, Liu Y, et al. A case study of the mixed rainfall-snowfall event associated with an extratropical cyclone in autumn. Acta Meteor Sinica, 2013, 71(4): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304003.htm
    [37]
    Wu G X, Cai Y P, Tang X J. Moist potential vorticity and slantwise vorticity development. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm
    [38]
    Shou S W. Theory and application of the potential vorticity. Meteor Mon, 2010, 36(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201003004.htm
    [39]
    Huang L W, Yi Q J, Qin Z B, et al. Dynamics/thermdynamics diagnosis of explosive development of extratropical cyclones over the Northwestern Pacific Ocean. Acta Meteor Sinica, 1999, 57(5): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905007.htm
    [40]
    Zheng Y J, Wu G X, Liu Y M. Dynamical and thermal problems in vortex development and movement. Part Ⅰ: A PV-Q view. Acta Meteor Sinica, 2013, 71(2): 185-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302003.htm
    [41]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146: 1999-2049.
    [42]
    Takaya K, Nakamura H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett, 1997, 24(23): 2985-2988.
    [43]
    Takaya K, Nakamura H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci, 2001, 58(6): 608-627.
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (1166) PDF downloads(211) Cited by()
    • Received : 2022-04-02
    • Accepted : 2022-05-18
    • Published : 2022-07-13

    /

    DownLoad:  Full-Size Img  PowerPoint