Chen Yuye, Wang Peijuan, Zhang Yuanda, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. DOI: 10.11898/1001-7313.20220407.
Citation: Chen Yuye, Wang Peijuan, Zhang Yuanda, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. DOI: 10.11898/1001-7313.20220407.

Comparison of Drought Recognition of Spring Maize in Northeast China Based on 3 Remote Sensing Indices

More Information
  • Drought is a complex and widespread natural disaster, which has brought serious environmental and social problems and caused huge economic losses to China. For nearly half a century, the trend of aridification in Northeast China has been very significant, the area of influence has increased, and the degree of drought has also intensified significantly. Drought index is the basis of judging the occurrence of drought events, evaluating the degree of drought, clarifying the spatiotemporal characteristics of drought, and formulating measures for drought prevention and mitigation. Numerous studies indicate that solar-induced chlorophyll fluorescence(SIF), normalized difference vegetation index(NDVI), enhanced vegetation index(EVI), and normalized difference water index(NDWI) can be used to identify agricultural drought, but the research on comparing the ability of SIF index, NDWI and NDVI for identifying agricultural drought has not been reported publicly. Taking spring maize in Northeast China as the research object, NDWI and NDVI are calculated using the surface reflectance data MOD09A1. Combined with SIF index, NDWI and NDVI, the time series dataset of remote sensing drought index is constructed, respectively, and the accuracy and sensitivity of these three indices for identifying the drought is further explored. It shows that the accuracy of three indices in indentifying maize drought are all higher than 80%, and the accuracy of SIF index is the highest, reaching 89.27%. The accuracy for identifying severe drought is higher than mild and moderate drought for three indices, all reaching more than 94%, and the accuracy of SIF index exceeds 95%. From the perspective of different developmental stages of spring maize, the monitoring accuracy is the highest at seedling stage, reaching more than 90%, and is the lowest at jointing-booting stage and grain filling-maturity stage. The drought identifying accuracies of SIF index during four developmental periods of spring maize are all better than those of NDWI and NDVI. The sensitivities of SIF index, NDWI and NDVI to the identification of maize drought are different, and the SIF index has the highest sensitivity to drought identification, followed by NDWI, and NDVI is slightly lower. In terms of drought grades, the identifying sensitivities of three indices to severe drought are all higher than those of mild and moderate drought. Above all, compared with NDWI and NDVI, SIF index has better accuracy and sensitivity in identifying the drought of spring maize in Northeast China, and can make timely and accurate response to maize drought in Northeast China. The results have important practical significance for accurately identifying and predicting drought of spring maize in Northeast China, and taking effective drought-resistant measures in a timely and objective manner to minimize the damage to crops.
  • Fig  1.   Study area and typical stations

    Fig  2.   Distribution of drought sample sites and drought frequency for spring maize in Northeast China from May to Sep during 2000-2013

    Fig  3.   Accuracy of SIF index, NDWI and NDVI in identifying different drought grades for spring maize

    Fig  4.   Sensitivity of SIF index, NDWI and NDVI in identifying different drought grades for spring maize

    Fig  5.   Sensitivity in identifying drought for spring maize by SIF index, NDWI and NDVI

    (a)difference between drought occurrence date and determined disaster record date, (b)the difference frequency and cumulative frequency between drought occurrence date and determined disaster record date

    Fig  6.   Drought sensitivity identified by SIF index, NDWI and NDVI at typical stations

    Table  1   Accuracy of SIF index, NDWI and NDVI in identifying different drought grades at different developmental stages of spring maize

    遥感指数 发育阶段 准确度/%
    轻度干旱 中度干旱 重度干旱 总体
    SIF指数 苗期 100.00 94.44 94.45 95.77
    拔节-孕穗期 78.95 81.82 100.00 81.82
    抽穗-开花期 100.00 92.31 100.00 96.77
    灌浆-成熟期 78.57 76.47 100.00 80.56
    NDWI 苗期 88.24 88.89 100.00 91.55
    拔节-孕穗期 73.68 72.73 100.00 75.76
    抽穗-开花期 85.71 76.92 90.91 83.87
    灌浆-成熟期 64.29 82.35 100.00 77.78
    NDVI 苗期 100.00 94.44 94.45 95.77
    拔节-孕穗期 73.68 45.45 100.00 66.67
    抽穗-开花期 85.71 76.92 90.91 83.00
    灌浆-成熟期 64.29 82.35 100.00 77.00
    DownLoad: CSV
  • [1]
    陈晓玲, 赵红梅, 田礼乔.环境遥感模型与应用.武汉:武汉大学出版社, 2008:188-189.

    Chen X L, Zhao H M, Tian L Q. Remote Sensing of Environment: Models and Applications. Wuhan: Wuhan University Press, 2008: 188-189.
    [2]
    高涛涛, 殷淑燕, 王水霞. 基于SPEI指数的秦岭南北地区干旱时空变化特征. 干旱区地理, 2018, 41(4): 761-770. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804012.htm

    Gao T T, Yin S Y, Wang S X. Spatial and temporal variations of drought in northern and southern regions of Qinling Mountains based on standardized precipitation evapotranspiration index. Arid Land Geography, 2018, 41(4): 761-770. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201804012.htm
    [3]
    宋艳玲, 王建林, 田靳峰, 等. 气象干旱指数在东北春玉米干旱监测中的改进. 应用气象学报, 2019, 30(1): 25-34. DOI: 10.11898/1001-7313.20190103

    Song Y L, Wang J L, Tian J F, et al. The spring maize drought index in Northeast China based on mrtrorological drought index. J Appl Meteor Sci, 2019, 30(1): 25-34. DOI: 10.11898/1001-7313.20190103
    [4]
    倪深海, 顾颖, 彭岳津, 等. 近七十年中国干旱灾害时空格局及演变. 自然灾害学报, 2019, 28(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906019.htm

    Ni S H, Gu Y, Peng Y J, et al. Spatio-temporal pattern and evolution trend of drought disaster in China in recent seventy years. J Nat Disaster, 2019, 28(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906019.htm
    [5]
    蔡福, 米娜, 明惠青, 等. WOFOST模型蒸散过程改进对玉米干旱模拟影响. 应用气象学报, 2021, 32(1): 52-64. DOI: 10.11898/1001-7313.20210105

    Cai F, Mi N, Ming H Q, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. DOI: 10.11898/1001-7313.20210105
    [6]
    吴霞, 王培娟, 公衍铎, 等. 1961—2015年黄淮海平原夏玉米干旱识别及时空特征分析. 农业工程学报, 2019, 35(18): 189-199. DOI: 10.11975/j.issn.1002-6819.2019.18.023

    Wu X, Wang P J, Gong Y D, et al. Analysis of drought identification and spatio-temporal characteristics for summer corn in Huang-Huai-Hai plain in year of 1961-2015. Transactions of the CSAE, 2019, 35(18): 189-199. DOI: 10.11975/j.issn.1002-6819.2019.18.023
    [7]
    王婧瑄, 郭建平, 李蕊. 春玉米积温稳定性及在发育期预报中的应用. 应用气象学报, 2019, 30(5): 577-585. DOI: 10.11898/1001-7313.20190506

    Wang J X, Guo J P, Li R. Accumulated temperature stability of spring maize and its application to growth period forecast. J Appl Meteor Sci, 2019, 30(5): 577-585. DOI: 10.11898/1001-7313.20190506
    [8]
    赵俊芳, 杨晓光, 刘志娟. 气候变暖对东北三省春玉米严重低温冷害及种植布局的影响. 生态学报, 2009, 29(12): 6544-6551. DOI: 10.3321/j.issn:1000-0933.2009.12.029

    Zhao J F, Yang X G, Liu Z J. Influence of climate warming on serious low temperature and cold damage and cultivation pattern of spring maize in Northeast China. Acta Ecologica Sinica, 2009, 29(12): 6544-6551. DOI: 10.3321/j.issn:1000-0933.2009.12.029
    [9]
    葛东, 魏新光, 景竹然, 等. 基于SPEI指数的东北玉米种植区春玉米生长季干旱演变特征. 水利与建筑工程学报, 2020, 18(4): 41-47. DOI: 10.3969/j.issn.1672-1144.2020.04.007

    Ge D, Wei X G, Jing Z R, et al. Characteristics of drought evolution in spring maize growing season in Northeast maize planting area based on SPEI. J Water Resours Archit Eng, 2020, 18(4): 41-47. DOI: 10.3969/j.issn.1672-1144.2020.04.007
    [10]
    王培娟, 霍治国, 杨建莹, 等. 基于热量指数的东北春玉米冷害指标. 应用气象学报, 2019, 30(1): 13-24. DOI: 10.11898/1001-7313.20190102

    Wang P J, Huo Z G, Yang J Y, et al. Indicators of chilling damage for spring maize based on heat index in Northeast China. J Appl Meteor Sci, 2019, 30(1): 13-24. DOI: 10.11898/1001-7313.20190102
    [11]
    赵锦, 杨晓光, 刘志娟, 等. 全球气候变暖对中国种植制度的可能影响X. 气候变化对东北三省春玉米气候适宜性的影响. 中国农业科学, 2014, 47(16): 3143-3158. DOI: 10.3864/j.issn.0578-1752.2014.16.003

    Zhao J, Yang X G, Liu Z J, et al. The possible effects of global warming on cropping systems in China Ⅹ. The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China. Scientia Agricultura Sinica, 2014, 47(16): 3143-3158. DOI: 10.3864/j.issn.0578-1752.2014.16.003
    [12]
    刘志娟, 杨晓光, 王文峰, 等. 全球气候变暖对中国种植制度可能影响Ⅳ. 未来气候变暖对东北三省春玉米种植北界的可能影响. 中国农业科学, 2010, 43(11): 2280-2291. DOI: 10.3864/j.issn.0578-1752.2010.11.011

    Liu Z J, Yang X G, Wang W F, et al. The possible effects of global warming on cropping systems in China Ⅳ. The possible impact of future climatic warming on the northern limits of spring maize in three provinces of Northeast China. Scientia Agricultura Sinica, 2010, 43(11): 2280-2291. DOI: 10.3864/j.issn.0578-1752.2010.11.011
    [13]
    董秋婷, 李茂松, 刘江, 等. 近50年东北地区春玉米干旱的时空演变特征. 自然灾害学报, 2011, 20(4): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201104007.htm

    Dong Q T, Li M S, Liu J, et al. Spatio-temporal evolution characteristics of drought of spring maize in Northeast China in recent 50 years. J Nat Disaster, 2011, 20(4): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201104007.htm
    [14]
    殷飞, 金世佳. 遥感在农业旱情监测中的应用现状与展望. 干旱环境监测, 2015, 29(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC201502009.htm

    Yin F, Jin S J. Application status and prospect on agricultural drought monitoring based on remote sensing. Arid Environ Monitor, 2015, 29(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC201502009.htm
    [15]
    黄友昕, 刘修国, 沈永林, 等. 农业干旱遥感监测指标及其适应性评价方法研究进展. 农业工程学报, 2015, 31(16): 186-195. DOI: 10.11975/j.issn.1002-6819.2015.16.025

    Huang Y X, Liu X G, Shen Y L, et al. Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods. Transactions of the CSAE, 2015, 31(16): 186-195. DOI: 10.11975/j.issn.1002-6819.2015.16.025
    [16]
    郭铌, 陈添宇, 雷建勤, 等. 用NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度. 应用气象学报, 1997, 8(2): 85-91. http://qikan.camscma.cn/article/id/19970228

    Guo N, Chen T Y, Lei J Q, et al. Estimating farmland soil moisture in eastern Gansu Province using NOAA satellite data. J Appl Meteor Sci, 1997, 8(2): 85-91. http://qikan.camscma.cn/article/id/19970228
    [17]
    王圆圆, 扎西央宗. 利用条件植被指数评价西藏植被对气象干旱的响应. 应用气象学报, 2016, 27(4): 435-444. DOI: 10.11898/1001-7313.20160406

    Wang Y Y, Zhaxi Yangzong. Assessing vegetation response to meteorological drought in Tibet autonomous region using vegetation condition index. J Appl Meteor Sci, 2016, 27(4): 435-444. DOI: 10.11898/1001-7313.20160406
    [18]
    李文梅, 覃志豪, 李文娟, 等. MODIS NDVI与MODIS EVI的比较分析. 遥感信息, 2010(6): 73-78. DOI: 10.3969/j.issn.1000-3177.2010.06.016

    Li W M, Qin Z H, Li W J, et al. Comparison and analysis of MODIS NDVI and MODIS EVI. Remote Sens Inf, 2010(6): 73-78. DOI: 10.3969/j.issn.1000-3177.2010.06.016
    [19]
    Fensholt R, Sandholt I. Derivation of a shortwave infrared water stress index from MODIS near and shortwave infrared data in a semiarid environment. Remote Sens Environ, 2003(87): 111-121.
    [20]
    刘小磊, 覃志豪. NDWI与NDVI指数在区域干旱监测中的比较分析——以2003年江西夏季干旱为例. 遥感技术与应用, 2007, 22(5): 608-612. DOI: 10.3969/j.issn.1004-0323.2007.05.006

    Liu X L, Qin Z H. Comparative analysis between NDWI and NDVI indices in regional drought monitoring. Remote Sens Technol Appl, 2007, 22(5): 608-612. DOI: 10.3969/j.issn.1004-0323.2007.05.006
    [21]
    李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26(10): 2186-2196. DOI: 10.3321/j.issn:1000-4025.2006.10.037

    Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Bot Boreali-Occidentalia Sinica, 2006, 26(10): 2186-2196. DOI: 10.3321/j.issn:1000-4025.2006.10.037
    [22]
    刘雷震, 武建军, 周洪奎, 等. 叶绿素荧光及其在水分胁迫监测中的研究进展. 光谱学与光谱分析, 2017, 37(9): 2780-2787. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709025.htm

    Liu L Z, Wu J J, Zhou H K, et al. Chlorophyll fluorescence and its progress in detecting water stress. Spectrosc Spect Anal, 2017, 37(9): 2780-2787. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201709025.htm
    [23]
    曹银轩, 黄卓, 徐喜娟, 等. 黄土高原植被日光诱导叶绿素荧光对气象干旱的响应. 应用生态学报, 2022, 33(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202202021.htm

    Cao Y X, Huang Z, Xu X J, et al. Responses of solar-induced chlorophyll fluorescence to meteorological drought across the Loess Plateau, China. Chinese J Appl Ecology, 2022, 33(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202202021.htm
    [24]
    Cao J J, An Q, Zhang X, et al. Is satellite Sun-induced chlorophyll fluorescence more indicative than vegetation indices under drought condition?. Sci Total Environ, 2021, 792: 148396. DOI: 10.1016/j.scitotenv.2021.148396
    [25]
    史晓亮, 吴梦月, 丁皓. SPEI和植被遥感信息监测西南地区干旱差异分析. 农业机械学报, 2020, 51(12): 184-192. DOI: 10.6041/j.issn.1000-1298.2020.12.020

    Shi X L, Wu M Y, Ding H. Difference analysis of SPEI and vegetation remote sensing information in drought monitoring in Southwest China. Trans Chinese Soc Agric Mach, 2020, 51(12): 184-192. DOI: 10.6041/j.issn.1000-1298.2020.12.020
    [26]
    陈鑫, 计璐艳, 于凯, 等. 日光诱导叶绿素荧光对山东省干旱的监测. 中国科技论文, 2021, 16(5): 564-570. DOI: 10.3969/j.issn.2095-2783.2021.05.017

    Chen X, Ji L Y, Yu K, et al. Monitoring of drought in Shandong Province by sun-induced chlorophyll fluorescence. China Sciencepaper, 2021, 16(5): 564-570. DOI: 10.3969/j.issn.2095-2783.2021.05.017
    [27]
    王培娟, 马玉平, 霍治国, 等. 土壤水分对冬小麦叶片光合速率影响模型构建. 应用气象学报, 2020, 31(2): 267-279. DOI: 10.11898/1001-7313.20200302

    Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(2): 267-279. DOI: 10.11898/1001-7313.20200302
    [28]
    刘二华, 周广胜, 周莉, 等. 夏玉米不同生育期叶片和冠层含水量的遥感反演. 应用气象学报, 2020, 31(1): 52-62. DOI: 10.11898/1001-7313.20200105

    Liu E H, Zhou G S, Zhou L, et al. Remote sensing inversion of leaf and canopy water content in different growth stages of summer maize. J Appl Meteor Sci, 2020, 31(1): 52-62. DOI: 10.11898/1001-7313.20200105
    [29]
    郭建平. 农业气象灾害监测预测技术研究进展. 应用气象学报, 2016, 27(5): 620-630. DOI: 10.11898/1001-7313.20160510

    Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. J Appl Meteor Sci, 2016, 27(5): 620-630. DOI: 10.11898/1001-7313.20160510
    [30]
    郭庆法, 王庆成, 王黎明. 中国玉米栽培学. 上海: 上海科学技术出版社, 2004: 31-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201711001.htm

    Guo Q F, Wang Q C, Wang L M. Maize Cultivation in China. Shanghai: Shanghai Science and Technology Press, 2004: 31-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201711001.htm
    [31]
    张建平, 赵艳霞, 王春乙, 等. 气候变化情景下东北地区玉米产量变化模拟. 中国生态农业学报, 2008, 16(6): 1448-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200806022.htm

    Zhang J P, Zhao Y X, Wang C Y, et al. Simulation of maize production under climate change scenario in Northeast China. Chinese J Eco-Agr, 2008, 16(6): 1448-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200806022.htm
    [32]
    马建勇, 许吟隆, 潘婕. 东北地区农业气象灾害的趋势变化及其对粮食产量的影响. 中国农业气象, 2012, 33(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201202022.htm

    Ma J Y, Xu Y L, Pan J. Analysis of agro-meteorological disasters tendency variation and the impacts on grain yield over Northeast China. Chinese J Agrometeor, 2012, 33(2): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201202022.htm
    [33]
    Ding Y, Xu J, Wang X, et al. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci Total Environ, 2020, 716(6247): 137166.
    [34]
    谢慧君, 张廷斌, 易桂花, 等. 川西高原植被NDVI动态变化特征及对气候因子的响应. 水土保持通报, 2020, 40(4): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202004039.htm

    Xie H J, Zhang T B, Yi G H, et al. Dynamic characteristics of NDVI values and its response to climatic factors in Western Sichuan Plateau. Bulletin Soil Water Conser, 2020, 40(4): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB202004039.htm
    [35]
    刘欢, 刘荣高, 刘世阳. 干旱遥感监测方法及其应用发展. 地球信息科学学报, 2012, 14(2): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201202012.htm

    Liu H, Liu R G, Liu S Y. Review of drought monitoring by remote sensing. Int J Geogr Inf Sci, 2012, 14(2): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201202012.htm
    [36]
    周正明. 遥感光谱指数反演土壤水分及干旱时空分布研究. 北京: 中国气象科学研究院, 2013.

    Zhou Z M. Soil Moisture Retrieval Uaing Remote Sensing Spectral Indexes and Tempo-spatial Drought Analysis in East China Winter Sheat-planting Area. Beijing: Chinese Academy of Meteorological Sciences, 2013.
    [37]
    Kowalski K, Okujeni A, Brell M, et al. Quantifying drought effects i n central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series. Remote Sens Environ, 2022, 268: 112781. DOI: 10.1016/j.rse.2021.112781
    [38]
    Wang Y J, Fu B J, Liu Y X, et al. Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agr Forest Meteorol, 2021, 306: 18468.
    [39]
    张淑杰, 张玉书, 孙龙彧, 等. 东北地区玉米生育期干旱分布特征及其成因分析. 中国农业气象, 2013, 34(3): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201303017.htm

    Zhang S J, Zhang Y S, Sun L Y, et al. Analysis of distributional characteristics and primary causes of maize drought in Northeast China. Chinese J Agrometeor, 2013, 34(3): 350-357. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201303017.htm
  • Cited by

    Periodical cited type(16)

    1. 王薪宇,房世波,韩佳昊. 基于NDVI的植被光学厚度统计降尺度方法. 应用气象学报. 2025(01): 33-42 . 本站查看
    2. 陈印,刚成诚,刘欢欢,刘悦,范蒙恩,陈宇,张曼,于子涵. 基于GEE的苹果园地遥感信息提取研究——以陕西省渭北旱塬区为例. 西北林学院学报. 2024(01): 36-43 .
    3. 李美萱,霍治国,孔瑞,江梦圆,米前川. 黄淮海冬小麦春季低温灾害等级指标构建. 应用气象学报. 2024(01): 45-56 . 本站查看
    4. 吴叔阳,郑博福,汪江,刘忠,万炜,师纪博. 2022年江西省极端干旱对柑橘种植经济损失的遥感评估. 遥感技术与应用. 2024(02): 337-349 .
    5. 宋艳玲,周广胜,郭建平,潘亚茹,杨孟娇,田靳峰,李香雪,孟祥祎,兰惠婷,蒋玮光,隋丹,周灵妤,史俊辰,聂畅,满意. 不同播期对玉米先玉335产量和品质的影响. 应用气象学报. 2024(05): 619-628 . 本站查看
    6. 郭尔静,杨霏云,伍露,孙爽,高家宝,张超群,张玲. 基于APSIM的内蒙古突泉春玉米水氮管理措施. 应用气象学报. 2024(05): 629-640 . 本站查看
    7. 张德军,杨世琦,祝好,叶勤玉,何泽能,饶智杰. 重庆市主城都市区热岛效应定量评估. 应用气象学报. 2023(01): 91-103 . 本站查看
    8. 张慧,高全,常妹婷,金晨,梁琬璐,蔡福. 东北雨养玉米田碳交换年际变化及影响因素. 应用气象学报. 2023(02): 246-256 . 本站查看
    9. 周鑫城,左小清,李勇发,杨栩,邓云龙,周家厚. 不同地表覆盖对InSAR技术的相干性影响研究. 贵州大学学报(自然科学版). 2023(03): 62-70 .
    10. 王俊方,周广胜,宋艳玲,任三学. 气象条件对廉玉1号玉米产量的影响. 应用气象学报. 2023(03): 373-378 . 本站查看
    11. 冯思伟,刘璐铭,邓开元,陈欣然,蒋晓华,李先怡. “珠海一号”高光谱数据城市不透水面提取研究. 遥测遥控. 2023(04): 88-95 .
    12. 宋艳玲,周广胜,郭建平,董静,潘亚茹,张仁祖,张利华,吴世明,贾红,宋强,李轲,陈耿,徐金霞. 气候变暖对冬小麦徐麦33产量和品质影响. 应用气象学报. 2023(05): 552-561 . 本站查看
    13. 刘晋,陈天伟,刘鹏,贾相苹. 太原城市群生态环境质量监测及驱动力分析. 水土保持通报. 2023(04): 154-161+210 .
    14. 周嘉,杨小利,王丽娜,王劲松. 冬小麦综合干旱评估指标建立及应用——以半干旱黄土高原地区为例. 干旱地区农业研究. 2023(06): 254-262+302 .
    15. 陈雨烨,王培娟,张源达,王旗,杨建莹. 基于SIF的东北春玉米干旱动态阈值构建. 农业工程学报. 2023(19): 103-110 .
    16. 吴黎,张有智,解文欢,宋茜,李岩. 东北地区农业遥感研究进展与展望. 中国农业信息. 2023(06): 80-91 .

    Other cited types(10)

Catalog

    Figures(6)  /  Tables(1)

    Article views1366 PDF downloads110 Cited by: 26
    • Received : 2022-04-18
    • Accepted : 2022-05-29
    • Published : 2022-07-12

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return