Guo Anhong, Wang Chunzhi, Deng Huanhuan, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. DOI: 10.11898/1001-7313.20220503.
Citation: Guo Anhong, Wang Chunzhi, Deng Huanhuan, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. DOI: 10.11898/1001-7313.20220503.

Atmospheric Dynamics Analysis and Simulation of the Migration of Fall Armyworm

More Information
  • After the invasion of fall armyworm (Spodoptera frugiperda) in China at the end of 2018 or at the beginning of 2019, it spreads rapidly and becomes a seasonal migrating pest that seriously threatens the maize production in China. The long-distance migration of adult fall armyworm is closely related to the seasonal changes of atmospheric circulation in East Asia. The atmospheric circulation and low layer wind dynamic condition that influence the migration of fall armyworm in 2019-2021 are analyzed, and 4 typical weather processes beneficial to the migration are selected to simulate the migration path and landing point with Hybrid Single-particle Lagrangian Integrated Trajactory(HYSPLIT) model. The results show that, during the northward migration of fall armyworm in spring and summer, the strength of the southwest airflow is different due to the varying strength, location and westward extension of the Northwestern Pacific subtropical high(WPSH) in each year, and therefore the low layer wind driving the migration of fall armyworm to transition region and main corn planting area is different. The earlier onset of the South China Sea summer monsoon in May of 2019 is conducive to the early migration from South China into the middle and lower reaches of the Yangtze. June is a key stage for the fall armyworm migration to northern summer maize area, and further spreading to the spring maize area in North China. The west ridge point positions of WPSH from June to July varies in different year, and leads to different northernmost landing position of the pests, which is attributed to the south airflow carrying fall armyworm on the western side of the WPSH. The dynamic conditions of low layer wind during August to September are different in 2019-2021, which vital to the migration to main spring maize producing areas in Northeast China. In 4 simulation cases, 3-weather-process simulations are effectively monitored and verified, indicating the migration path and landing point of fall armyworm. However, in January of 2022, there are some misreports landing point in Guizhou and Fujian, though the southwest low level jet is favorable. HYSPLIT model is effective in the flight trajectory simulation, but it has some uncertainty in the migration distance, time and landing point due to biological characteristics, topography, microclimate, etc. In future, the simulation model should be improved by combination of real-time radar monitoring and other means.
  • Fig  1.   Simulated migration trajectory of fall armyworm from Yunnan, Guangxi, Guangdong, Hunan, Jiangxi and Guizhou from 13 May to 15 May in 2021

    Fig  2.   Increased number of counties in ten days that observed adult and larvae of fall armyworm on 20 May and 30 May in 2021

    Fig  3.   Simulated migration trajectory of fall armyworm from central Hebei and Shandong Peninsula from 7 Sep to 9 Sep in 2021

    Fig  4.   Simulated migration trajectory of fall armyworm from Hebei, Henan, and Shaanxi from 5 Sep to 7 Sep in 2021

    Fig  5.   Monitoring of fall armyworm adult at Songzi and Yunmeng stations of Hubei in 2021

    Fig  6.   Simulated migration trajectory of fall armyworm from Yunnan, Guangxi, Guangdong of China and foreign countries during low-level jet process from 26 Jan to 28 Jan in 2022

  • [1]
    Luginbill P.The fall armyworm.USDA Technology Bulletin.1928, 34:91.
    [2]
    Sparks A N. A review of the biology of the fall armyworm. Fla Entomol, 1979, 62(2): 82-87. DOI: 10.2307/3494083
    [3]
    姜玉英, 刘杰, 谢茂昌, 等. 2019年我国草地贪夜蛾扩散为害规律观测. 植物保护, 2019, 45(6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201906002.htm

    Jiang Y Y, Liu J, Xie M C, et al. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protect, 2019, 45(6): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201906002.htm
    [4]
    姜玉英, 刘杰, 朱晓明. 草地贪夜蛾侵入我国的发生动态和未来趋势分析. 中国植保导刊, 2019, 39(2): 33-35. DOI: 10.3969/j.issn.1672-6820.2019.02.006

    Jiang Y Y, Liu J, Zhu X M. Analysis of the occurrence dynamics and future trend of Spodoptera frugiperda in China. China Plant Protect, 2019, 39(2): 33-35. DOI: 10.3969/j.issn.1672-6820.2019.02.006
    [5]
    陈辉, 杨学礼, 谌爱东, 等. 我国最早发现为害地草地贪夜蛾的入侵时间及其虫源分布. 应用昆虫学报, 2020, 57(6): 1270-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202006005.htm

    Chen H, Yang X L, Chen A D, et al. Immigration timing and origin of the first fall armyworms(Spodoptera frugiperda) detected in China. Chinese J Appl Entomol, 2020, 57(6): 1270-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202006005.htm
    [6]
    陈辉, 武明飞, 刘杰, 等. 我国草地贪夜蛾迁飞路径及其发生区划. 植物保护学报, 2020, 47(4): 747-757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202004009.htm

    Chen H, Wu M F, Liu J, et al. Migratory routes and occurrence divisions of the fall armyworm Spodoptera frugiperda in China. J Plant Protect, 2020, 47(4): 747-757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBF202004009.htm
    [7]
    吴秋琳, 姜玉英, 胡高, 等. 中国热带和南亚热带地区草地贪夜蛾春夏两季迁飞轨迹的分析. 植物保护, 2019, 45(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201903002.htm

    Wu Q L, Jiang Y Y, Hu G, et al. Analysis on spring and summer migration routes of fall armyworm(Spodoptera frugiperda) from tropical and southern subtropical zones of China. Plant Protect, 2019, 45(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201903002.htm
    [8]
    包云轩, 黄金颖, 谢晓金, 等. 季风进退和转换对中国褐飞虱迁飞的影响. 生态学报, 2013, 33(16): 4864-4877. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201316006.htm

    Bao Y X, Huang J Y, Xie X J, et al. Influence of monsoon's advancing, retreating and conversion on migrations of Nilaparvata lugens(Stål) in China. Acta Ecol Sinica, 2013, 33(16): 4864-4877. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201316006.htm
    [9]
    包云轩, 王明飞, 陈粲, 等. 东亚夏季风进退对我国南方水稻主产区稻纵卷叶螟发生的影响. 生态学报, 2019, 39(24): 9351-9364. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201924032.htm

    Bao Y X, Wang M F, Chen C, et al. Impact of East Asian summer monsoon advancing and retreating on occurrence of Cnaphalocrocis medinalis Guenée in the main rice-growing regions of south China. Acta Ecol Sinica, 2019, 39(24): 9351-9364. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201924032.htm
    [10]
    赵圣菊. 东亚地区低层大气环流季节性变化与粘虫远距离迁飞. 生态学报, 1981, 1(4): 315-326. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB198104002.htm

    Zhao S J. Relation between long-distance migration of the oriental armyworm and the seasonal variation of the general circulation over East Asia. Acta Ecol Sinica, 1981, 1(4): 315-326. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB198104002.htm
    [11]
    刘芸芸, 李维京, 艾孑兑秀, 等. 月尺度西太平洋副热带高压指数的重建与应用. 应用气象学报, 2012, 23(4): 414-423. DOI: 10.3969/j.issn.1001-7313.2012.04.004

    Liu Y Y, Li W J, Ai W X, et al. Reconstruction and application of the monthly Western Pacific subtropical high indices. J Appl Meteor Sci, 2012, 23(4): 414-423. DOI: 10.3969/j.issn.1001-7313.2012.04.004
    [12]
    吴孔明, 杨现明, 赵胜园, 等. 草地贪夜蛾防控手册. 北京: 中国农业科学技术出版社, 2020.

    Wu K M, Yang X M, Zhao S Y, et al. Prevention and Control Manual of Spodoptera frugiperda. Beijing: China Agricultural Science and Technology Press, 2020.
    [13]
    马玉芬, 陆辉, 刘海涛. HYSPLIT模式轨迹计算误差分析. 南京信息工程大学学报(自然科学版), 2015, 7(1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ201501011.htm

    Ma Y F, Lu H, Liu H T. Trajectory calculation error assessment for HYSPLIT. Journal of Nanjing University of Information Science & Technology(Nat Sci Ed), 2015, 7(1): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-NJXZ201501011.htm
    [14]
    Draxler R R. Boundary layer isentropic and kinematic trajectories during the August 1993 North Atlantic regional experiment intensive. J Geophys Res, 1996, 101(D22): 29255-29268. DOI: 10.1029/95JD03760
    [15]
    Draxler R R, Hess G D. An overview of the HYSPLIT 4 modeling system for trajectories, dispersion, and deposition. Aust Meteor Mag, 1998, 47: 295-308.
    [16]
    Escudero M, Stein A, Draxler R R, et al. Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model(HYSPLIT). J Geophys Res Atmos, 2006, 111(D6). DOI: 10.1029/2005JD006395.
    [17]
    Rolph G D, Draxler R R, de Pena R G. Modeling sulfur concentrations and depositions in the United States during ANATEX. Atmos Environ, 1992, 26(1): 73-93. DOI: 10.1016/0960-1686(92)90262-J
    [18]
    Raxler R R. Meteorological factors of ozone predictability at Houston, Texas. J Air Waste Manag Assoc, 2000, 50(2): 259-271. DOI: 10.1080/10473289.2000.10463999
    [19]
    黄健, 刘作挺, 黄敏辉, 等. 珠江三角洲区域大气输送和扩散的季节特征. 应用气象学报, 2010, 21(6): 698-708. DOI: 10.3969/j.issn.1001-7313.2010.06.006

    Huang J, Liu Z T, Huang M H, et al. The seasonal characteristics of regional atmospheric transport and dispersion over the Pearl River Delta. J Appl Meteor Sci, 2010, 21(6): 698-708. DOI: 10.3969/j.issn.1001-7313.2010.06.006
    [20]
    芦芳, 翟保平, 胡高. 昆虫迁飞研究中的轨迹分析方法. 应用昆虫学报, 2013, 50(3): 853-862. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201303040.htm

    Lu F, Zhai B P, Hu G. Trajectory analysis methods for insect migration research. Chinese J Appl Entomol, 2013, 50(3): 853-862. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201303040.htm
    [21]
    郁振兴, 武予清, 蒋月丽, 等. 利用HYSPLIT模型分析麦蚜远距离迁飞前向轨迹. 生态学报, 2011, 31(3): 889-894. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103035.htm

    Yu Z X, Wu Y Q, Jiang Y L, et al. Forward trajectory analysis of wheat aphids during long-distance migration using HYSPLIT model. Acta Ecol Sinica, 2011, 31(3): 889-894. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103035.htm
    [22]
    包云轩, 孙梦秋, 严明良, 等. 基于两种轨迹模型的褐飞虱迁飞轨迹比较研究. 生态学报, 2016, 36(19): 6122-6138. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201619015.htm

    Bao Y X, Sun M Q, Yan M L, et al. Comparative study of migration trajectories of the brown planthopper, Nilaparvata lugens(Stål), in China based on two trajectory models. Acta Ecol Sinica, 2016, 36(19): 6122-6138. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201619015.htm
    [23]
    李克斌, 杜光青, 尹娇, 等. 利用吸虫塔对麦长管蚜迁飞活动的监测. 应用昆虫学报, 2014, 51(6): 1504-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201406012.htm

    Li K B, Du G Q, Yin J, et al. Monitoring the migration of Sitobion avenae(Fabricius) by suction trapping. Chinese J Appl Entomol, 2014, 51(6): 1504-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201406012.htm
    [24]
    Wolf W W, Westbrook J K, Raulston J, et al. Radar observation of orientation of noctuids migrating from corn fields in the Lower Rio Grande Valley. Southwest Entomol, 1995, 18(Suppl I): 45-61.
    [25]
    赵琳超, 廖用信, 陈壮美. 不同温度对草地贪夜蛾幼虫和蛹生长发育的影响. 湖南师范大学自然科学学报, 2020, 43(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ202001007.htm

    Zhao L C, Liao Y X, Chen Z M. Impacts of temperatures on the growth and development of larvae and pupae of Spodoptera frugiperda. Journal of Natural Science of Hunan Normal University, 2020, 43(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ202001007.htm
    [26]
    何莉梅, 葛世帅, 陈玉超, 等. 草地贪夜蛾的发育起点温度、有效积温和发育历期预测模型. 植物保护, 2019, 45(5): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201905005.htm

    He L M, Ge S S, Chen Y C, et al. The developmental threshold temperature, effective accumulated temperature and prediction model of developmental duration of fall armyworm, Spodotera frugiperda. Plant Protect, 2019, 45(5): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201905005.htm
    [27]
    封传红, 翟保平, 张孝羲, 等. 我国低空急流的时空分布与稻飞虱北迁. 生态学报, 2002, 22(4): 559-565. DOI: 10.3321/j.issn:1000-0933.2002.04.017

    Feng C H, Zhai B P, Zhang X X, et al. Climatology of low-level jet and northward migration of rice planthoppers. Acta Ecol Sinica, 2002, 22(4): 559-565. DOI: 10.3321/j.issn:1000-0933.2002.04.017
    [28]
    齐国君, 马健, 胡高, 等. 首次入侵广东的草地贪夜蛾迁入路径及天气背景分析. 环境昆虫学报, 2019, 41(3): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-KCTD201903008.htm

    Qi G J, Ma J, Hu G, et al. Analysis of migratory routes and atmospheric features of the newly invaded fall armyworm, Spodoptera frugiperda(J.E. Smith) in Guangdong Province. J Environ Entomol, 2019, 41(3): 488-496. https://www.cnki.com.cn/Article/CJFDTOTAL-KCTD201903008.htm
    [29]
    包云轩, 谢杰, 向勇, 等. 低空急流对中国褐飞虱重大北迁过程的影响. 生态学报, 2009, 29(11): 5773-5782. DOI: 10.3321/j.issn:1000-0933.2009.11.004

    Bao Y X, Xie J, Xiang Y, et al. Influence of low-level jets on the great events of BPH's migration northward in China. Acta Ecol Sinica, 2009, 29(11): 5773-5782. DOI: 10.3321/j.issn:1000-0933.2009.11.004
    [30]
    翟保平. 追踪天使——雷达昆虫学30年. 昆虫学报, 1999, 42(3): 315-326. DOI: 10.3321/j.issn:0454-6296.1999.03.016

    Zhai B P. Tracking angels: 30 years of radar entomolgy. Acta Entomol Sinica, 1999, 42(3): 315-326. DOI: 10.3321/j.issn:0454-6296.1999.03.016
    [31]
    Wolf W W, Westbrook J K, Raulston J, et al. Recent airborne radar observations of migrant pests in the United States. Phil Trans R Soc Lond, 1990, 328(1251): 619-630.
    [32]
    中国气象局. 中国气候公报(2019). 2019: 24-27.

    China Meteorological Administration. China Climate Bulletin. 2019: 24-27.
    [33]
    中国气象局. 中国气候公报(2020). 2020: 24-27.

    China Meteorological Administration. China Climate Bulletin. 2020: 24-27.
    [34]
    中国气象局. 中国气候公报(2021). 2021: 23-28.

    China Meteorological Administration. China Climate Bulletin. 2021: 23-28.
    [35]
    钱拴, 霍治国. 大气环流对中国稻飞虱危害的影响及其预测. 气象学报, 2007, 65(6): 994-1001. DOI: 10.3321/j.issn:0577-6619.2007.06.017

    Qian S, Huo Z G. Influences of atmospheric circulation on the occurrence and development of rice planthopper in China and its occurrence area prediction. Acta Meteor Sinica, 2007, 65(6): 994-1001. DOI: 10.3321/j.issn:0577-6619.2007.06.017
    [36]
    王纯枝, 张蕾, 郭安红, 等. 基于大气环流的稻纵卷叶螟气象预测模型. 应用气象学报, 2019, 30(5): 565-576. DOI: 10.11898/1001-7313.20190505

    Wang C Z, Zhang L, Guo A H, et al. Long-term meteorological prediction model on the occurrence and development of rice leaf roller based on atmospheric circulation. J Appl Meteor Sci, 2019, 30(5): 565-576. DOI: 10.11898/1001-7313.20190505
    [37]
    侯婷婷, 霍治国, 李世奎, 等. 影响稻飞虱迁飞规律的气象环境成因. 自然灾害学报, 2003, 12(3): 142-148. DOI: 10.3969/j.issn.1004-4574.2003.03.023

    Hou T T, Huo Z G, Li S K, et al. Causes of meteorological environment influencing on migration of rice planthopper. J Nat Disaster, 2003, 12(3): 142-148. DOI: 10.3969/j.issn.1004-4574.2003.03.023
    [38]
    侯婷婷, 霍治国, 卢志光, 等. 副热带高压与中国稻飞虱发生关系的研究. 自然灾害学报, 2003, 12(2): 213-219.

    Hou T T, Huo Z G, Lu Z G, et al. Relationship between subtropical high and occurrence of rice planthopper. J Nat Disaster, 2003, 12(2): 213-219.
    [39]
    霍治国, 陈林, 叶彩玲, 等. 气候条件对中国水稻稻飞虱为害规律的影响. 自然灾害学报, 2002, 11(1): 97-102. DOI: 10.3969/j.issn.1004-4574.2002.01.016

    Huo Z G, Chen L, Ye C L, et al. Effect of climate on outbreak of China rice planthopper. J Nat Disaster, 2002, 11(1): 97-102. DOI: 10.3969/j.issn.1004-4574.2002.01.016
    [40]
    包云轩, 曹云, 谢晓金, 等. 中国稻纵卷叶螟发生特点及北迁的大气背景. 生态学报, 2015, 35(11): 3519-3533. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201511003.htm

    Bao Y X, Cao Y, Xie X J, et al. Migration pattern of rice leaf roller and impact of atmospheric conditions on a heavy migration event in China. Acta Ecol Sinica, 2015, 35(11): 3519-3533. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201511003.htm
    [41]
    于彩霞, 霍治国, 张蕾, 等. 中国稻飞虱发生的大气环流指示指标. 生态学杂志, 2014, 33(4): 1053-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201404030.htm

    Yu C X, Huo Z G, Zhang L, et al. Leading indicators of atmospheric circulation characteristics on rice planthopper occurrence in China. Chinese J Ecology, 2014, 33(4): 1053-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201404030.htm
    [42]
    晏红明, 王灵. 西北太平洋副高东西变动与西南地区降水的关系. 应用气象学报, 2019, 30(3): 360-375. DOI: 10.11898/1001-7313.20190309

    Yan H M, Wang L. The relationship between east-west movement of subtropical high over Northwestern Pacific and precipitation in Southwestern China. J Appl Meteor Sci, 2019, 30(3): 360-375. DOI: 10.11898/1001-7313.20190309
    [43]
    王月, 张强, 顾西辉, 等. 淮河流域夏季降水异常与若干气候因子的关系. 应用气象学报, 2016, 27(1): 67-74. DOI: 10.11898/1001-7313.20160107

    Wang Y, Zhang Q, Gu X H, et al. Summer precipitation in the Huaihe River Basins and relevant climate indices. J Appl Meteor Sci, 2016, 27(1): 67-74. DOI: 10.11898/1001-7313.20160107
    [44]
    Zhang L, Yang B Y, Li S, et al. Disease-weather relationships for wheat powdery mildew under climate change in China. The Journal of Agricultural Science, 2017, 155: 1239-1252.
    [45]
    王纯枝, 霍治国, 张蕾, 等. 北方地区小麦蚜虫气象适宜度预报模型构建. 应用气象学报, 2020, 31(3): 280-289. DOI: 10.11898/1001-7313.20200303

    Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31(3): 280-289. DOI: 10.11898/1001-7313.20200303
    [46]
    张蕾, 郭安红, 王纯枝. 小麦白粉病气候风险评估. 生态学杂志, 2016, 35(5): 1330-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201605029.htm

    Zhang L, Guo A H, Wang C Z. Climatic risk assessment of wheat powdery mildew in China. Chinese J Ecology, 2016, 35(5): 1330-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201605029.htm
    [47]
    侯英雨, 张蕾, 吴门新, 等. 国家级现代农业气象业务技术进展. 应用气象学报, 2018, 29(6): 641-656. DOI: 10.11898/1001-7313.20180601

    Hou Y Y, Zhang L, Wu M X, et al. Advances of modern agrometeorological service and technology in China. J Appl Meteor Sci, 2018, 29(6): 641-656. DOI: 10.11898/1001-7313.20180601
    [48]
    Drake V A, Wang H K, Harman I T. Insect monitoring radar: Remote and network operation. Comput Electron Agric, 2002, 35(2/3): 77-94.
    [49]
    Drake V A, Reynolds D R. Radar entomology: Observing insect flight and migration. Radar Entomology Observing Insect Flight & Migration, 2012, 27(2): 282-311.
    [50]
    姜玉英. 雷达监测农作物迁飞性害虫研究与应用前景. 中国植保导刊, 2006, 26(4): 17-18. DOI: 10.3969/j.issn.1672-6820.2006.04.006

    Jiang Y Y. Research and application prospect of radar monitoring of crop migratory pests. China Plant Protect, 2006, 26(4): 17-18. DOI: 10.3969/j.issn.1672-6820.2006.04.006
    [51]
    孙嵬, 程志加, 高月波, 等. 三代粘虫成虫迁飞的雷达观测与分析. 应用昆虫学报, 2018, 55(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201802004.htm

    Sun W, Cheng Z J, Gao Y B, et al. The autumn migration of the third generation armyworm Mythimna separata(Walker): Radar observations and trajectory analysis. Chinese J Appl Entomol, 2018, 55(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201802004.htm
    [52]
    王锐, 张帆, 胡程, 等. 迁飞昆虫生物学参数反演及种类辨识分析. 应用昆虫学报, 2021, 58(3): 565-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103009.htm

    Wang R, Zhang F, Hu C, et al. Recent developments in radar technology that allow the identification of migratory insects. Chinese J Appl Entomol, 2021, 58(3): 565-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS202103009.htm
    [53]
    马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. DOI: 10.11898/1001-7313.20190101

    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. DOI: 10.11898/1001-7313.20190101
    [54]
    陶法, 官莉, 张雪芬, 等. Ka波段云雷达晴空回波垂直结构及变化特征. 应用气象学报, 2020, 31(6): 719-728. DOI: 10.11898/1001-7313.20200607

    Tao F, Guan L, Zhang X F, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. DOI: 10.11898/1001-7313.20200607
  • Related Articles

    [1]Ren Juzhang, Yang Xue, Tao Yun, Fu Zhijia, Chen Yan, Zhong Yahan, Wang Man, Jin Yan. Diagnosis and Numerical Simulation of Low-level Wind Shear over the Hengduan Mountains in Winter[J]. Journal of Applied Meteorological Science, 2025, 36(1): 77-89. DOI: 10.11898/1001-7313.20250108
    [2]Liu Yujue, Miao Shiguang, Liu Lei, Hu Fei. Effects of a Modified Sub-grid-scale Terrain Parameterization Scheme on the Simulation of Low-layer Wind over Complex Terrain[J]. Journal of Applied Meteorological Science, 2019, 30(1): 70-81. DOI: 10.11898/1001-7313.20190107
    [3]Xu Jing, Ma Zhiqiang, Zhao Xiujuan, Zhang Xiaoling. The Effect of Different Planetary Boundary Layer Schemes on the Simulation of Near Surface O3 Vertical Distribution[J]. Journal of Applied Meteorological Science, 2015, 26(5): 567-577. DOI: 10.11898/1001-7313.20150506
    [4]Liu Guiyan, Gao Shanhong, Wang Yongming, Chen Xueen. Numerical Simulation of Atmospheric Duct in Typhoon Subsidence Area[J]. Journal of Applied Meteorological Science, 2012, 23(1): 77-88.
    [5]Wang Sha, Ruan Zheng, Ge Runsheng. Simulation of Return Signal Spectrum of Wind Profile Radar[J]. Journal of Applied Meteorological Science, 2012, 23(1): 20-29.
    [6]Zhuo Ga, Xu Xiang de, Chen Lianshou. DYNAMICAL EFFECTOF BOUNDARY LAYER CHARACTERISTICS OF TIBETAN PLATEAU ON GENERAL CIRCULATION[J]. Journal of Applied Meteorological Science, 2002, 13(2): 163-169.
    [7]Ni Yunqi, Shen Xinyong, Yang Xiuqun. A Review of ENSO Dynamics and Its Numerical Simulation[J]. Journal of Applied Meteorological Science, 1998, 9(2): 239-245.
    [8]Yu Jinxiang Qiu Chongjian, . Construction of PBL Wind Fields by Fitting Numerical Simulation Output with Observations[J]. Journal of Applied Meteorological Science, 1997, 8(3): 302-309.
    [9]An Investigation for Computing Three-Dimensional Trajectory[J]. Journal of Applied Meteorological Science, 1992, 3(3): 328-333.
    [10]The Effects of Ambient Wind on Simulating Convective Clouds[J]. Journal of Applied Meteorological Science, 1992, 3(1): 20-31.
  • Cited by

    Periodical cited type(11)

    1. 邓环环,杨俊杰,郭安红,王纯枝,谢家旭,钟敏,郭广芬. 草地贪夜蛾迁飞气象预报方法探索及应用. 华中农业大学学报. 2024(01): 70-78 .
    2. 漆学伟,邸宁,梁玉勇,洪霖,贾志新,王旭明,王甦,程正新. 江西省52个春玉米品种对玉米蚜和亚洲玉米螟的抗性鉴定. 江西农业大学学报. 2024(01): 86-96 .
    3. 罗孳孳,唐云辉,武强,阳园燕,赵雨佳,张逸轩,陈欢. 气象大数据应用场景与气象服务技术预见研究——面向重庆农业领域. 农业现代化研究. 2024(01): 150-164 .
    4. 邵祺多,涂钢,布和朝鲁,刘实. 基于海-冰-气系统的东亚冬季风统计预测. 应用气象学报. 2024(02): 168-181 . 本站查看
    5. 顾俊文,王靖怡,张琪. 昆虫不育技术在害虫防治中的应用和研究进展. 植物保护学报. 2024(03): 527-535 .
    6. 董金慧,宋梁栋,李方向,王忠娣,牛晓萍,南江磊,成卫宁. 陕西省兴平市玉米田草地贪夜蛾的发生动态及关键防治技术. 植物保护学报. 2024(03): 619-628 .
    7. 赵花荣,任三学,齐月,张玲,田晓丽,杨超,胡丽丽. 冬小麦-夏玉米轮作田沟金针虫垂直活动特征. 应用气象学报. 2024(04): 467-479 . 本站查看
    8. 耿心泽,刘畅,刘旭艳,王玉龙,张智清,梁林林. 2020年1月哈尔滨PM_(2.5)重污染形成机制. 应用气象学报. 2024(06): 737-746 . 本站查看
    9. 王纯枝,郭安红,张蕾,邓环环,刘杰,曾娟,何亮. 草地贪夜蛾发生潜势的气象适宜度等级预报. 生态学杂志. 2023(07): 1783-1792 .
    10. 梁丽,马舒庆,滕玉鹏,胡程,崔铠,吴东丽,吴蕾,胡姮,朱永超,张光磊. 天气雷达空中生态监测系统建设和应用. 应用气象学报. 2023(05): 630-640 . 本站查看
    11. 徐敏,张海波,徐忆菲,郭安红,杨荣明,高苹. 草地贪夜蛾在江苏地区的发生特征及主要影响因素. 气象科学. 2023(06): 790-797 .

    Other cited types(1)

Catalog

    Figures(6)

    Article views1119 PDF downloads102 Cited by: 12
    • Received : 2022-05-16
    • Accepted : 2022-06-22
    • Published : 2022-09-14

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return