Wang Zelin, Zhou Xu, Wu Junhui, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. DOI:  10.11898/1001-7313.20220504.
Citation: Wang Zelin, Zhou Xu, Wu Junhui, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. DOI:  10.11898/1001-7313.20220504.

Weather Conditions and Cloud Microphysical Characteristics of an Aircraft Severe Icing Process

DOI: 10.11898/1001-7313.20220504
  • Received Date: 2022-03-16
  • Rev Recd Date: 2022-07-07
  • Publish Date: 2022-09-15
  • Based on the aircraft measurements on 28 February 2021, combined with ERA5 reanalysis data and sounding data, the weather background and the characteristics of cloud structure of a severe icing case on the aircraft are analyzed. The severe icing process is induced by the joint influence of high-level trough, low-level shear line, low-level jet and cold front. The ERA5 reanalysis data show that the maximum value area of supercooled water is mainly distributed at the height of 700 hPa to 600 hPa on the warm side of the front area and the ambient temperature is -4 to -12℃, accompanied by an upward movement of -0.2 to -0.8 Pa·s-1. The sounding data show that the cloud system is distributed in multiple layers. There is a deep dry layer between the upper ice crystal cloud and the lower supercooled water cloud. The temperature in the aircraft detection area is -9 to -3℃ and the dew-point spread is 0℃, which are favorable for icing. During the icing process, the air temperature is -8 to -5℃. Aircraft measurements show that there is abundant supercooled water in clouds. The average liquid water content by cloud particles probe is 0.35 g·m-3, and the maximum value is 0.7 g·m-3. The average liquid water content by total water content measurement probes is 0.5 g·m-3, the maximum value is 0.85 g·m-3, and for 11 minutes the liquid water content is larger than 0.45 g·m-3. The average median volume diameter of cloud particles is 20.3 μm, and the number concentration of cloud particles is 149.3 cm-3 on average. The number concentration of cloud particles tends to increase from low level to high level and vice versa for the median volume diameter of cloud particles. Finally, the conditions with different icing intensity that the King-air 350 aircraft may encounte during weather modification work in the cloud are discussed. The calculation shows that the King-air 350 aircraft carries out observation research or weather modification tasks when the liquid water content in the cloud is higher than 0.04 g·m-3, 0.15 g·m-3 and 0.45 g·m-3, it may encounter light, moderate, and severe icing, under certain conditions.
  • Fig. 1  Detection of flight

    (a)flight track, (b)altitude-time variation

    Fig. 2  Weather chart at 0800 BT 28 Feb 2021

    (the black solid line denotes the geopotential height, unit:dagpm;the black dashed line denotes the isotherm, unit:℃;the black triangle denotes the area of severe icing)

    Fig. 3  Sounding of Yan'an Station at 0800 BT 28 Feb 2021

    Fig. 4  Distribution of liquid water content at 0900 BT 28 Feb 2021

    (the black denotes terrain;the purple box denotes the area of severe icing;the colour shaded denotes the liquid water content;the red dashed line denotes the isotherm, unit:℃;the black dashed line denotes vertical velocity, unit:Pa·s-1)
    (a)the zonal section along 36.25°N, (b)the meridional section along 111.25°E

    Fig. 5  The distribution of aircraft measurements

    Fig. 6  Vertical distribution of aircraft measurements in Phase 1

    Fig. 7  Vertical distribution of aircraft measurements in Phase 2

    Fig. 8  Exposure distance and icing rate

    (a)WCM-LWC varying with exposure distance (the dashed line denotes the threshold of icing intensity), (b)icing rate (the dashed line denotes the threshold of time)

    Table  1  Airborne instrumentations and main parameters

    仪器名称 设备功能 测量范围 精度
    云粒子探头 测量云滴粒子 2~50 μm 1~12通道:1 μm;13~30通道:2 μm
    综合气象要素测量系统 测量温度,风速,风向,经纬度,海拔 海拔:0~15 km温度:-20~+40℃ 测温:0.05℃;风速:0.5 m·s-1
    总水含量仪 测量液态水含量,总水含量 0~10 g·m-3 0.001 g·m-3
    DownLoad: Download CSV
  • [1]
    Gultepe I, Sharman R, Williams P D, et al. A review of high impact weather for aviation meteorology. Pure Appl Geophys, 2019, 176(5): 1869-1921. doi:  10.1007/s00024-019-02168-6
    [2]
    Federal Aviation Administration, Federal Aviation Regulations(FAR). Part 25: Airworthiness Standards: Transport Category Airplanes. FAA, 2017.
    [3]
    Civil Aviation Administration of China. CCAR 25-R4: Chinese Civil Aviation Regulation No. 25: Airworthiness Standards for Transport Aircraft Beijing: Civil Aviation Administration of China, 2011.
    [4]
    Marwitz J. Comments on "characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification". J Appl Meteor Climatol, 2013, 52(7): 1670-1672. doi:  10.1175/JAMC-D-12-096.1
    [5]
    Schack C J, Christe K O. Forecasters' Guide on Aircraft Icing. Air Weather Service Rep, AWS/TR-80/001, 1980: 1-58.
    [6]
    Li Z L. Analysis of meteorological conditions for aircraft icing. J Sichuan Meteor, 1999, 9(3): 56-57. doi:  10.3969/j.issn.1674-2184.1999.03.015
    [7]
    Pang Z Y, Zhang Y X. Weather conditions of aircraft icing in the middle part of Gansu Province. Arid Meteor, 2008, 26(3): 53-56. doi:  10.3969/j.issn.1006-7639.2008.03.010
    [8]
    Liu K Y, Shen H X, Li X L, et al. Analysis of an aircraft icing event in Taiyuan airport. Meteor Mon, 2005, 31(12): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512004.htm
    [9]
    Chi Z P. Statistical analysis and numerical prediction experiment of weather conditions for aircraft icing. Meteor Sci Technol, 2007, 35(5): 714-718. doi:  10.3969/j.issn.1671-6345.2007.05.021
    [10]
    Rasmussen R, Politovich M, Marwitz J, et al. Winter Icing and Storms Project(WISP). Bull Amer Meteor Soc, 1992, 73(7): 951-976. doi:  10.1175/1520-0477(1992)073<0951:WIASP>2.0.CO;2
    [11]
    Cober S G, Isaac G A, Strapp J W. Aircraft icing measurements in east coast winter storms. J Appl Meteor Climatol, 1995, 34(1): 88-100. doi:  10.1175/1520-0450-34.1.88
    [12]
    Miller D, Bernstein B, McDonough B, et al. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research-Summary of Winter 96-97 Flight Operations//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998. DOI: 10.2514/6.1998-577.
    [13]
    Isaac G A, Cober S G, Strapp J W, et al. Recent Canadian research on aircraft in-flight icing. Can Aeronaut Space J, 2001, 47(3): 213-221.
    [14]
    Isaac G, Cober S, Strapp J, et al. Preliminary Results from the Alliance Icing Research Study(Airs)//39th Aerospace Sciences Meeting and Exhibit, 2001. DOI: 10.2514/6.2001-393.
    [15]
    Isaac G, Ayers J, Bailey M, et al. First Results from the Alliance Icing Research Study Ⅱ//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005. DOI: 10.2514/6.2005-252.
    [16]
    Bernstein B C, Wolff C A, McDonough F. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅰ: Canada and the continental United States. J Appl Meteor Climatol, 2007, 46(11): 1857-1878. doi:  10.1175/2007JAMC1607.1
    [17]
    Bernstein B C, Le Bot C. An inferred climatology of icing conditions aloft, including supercooled large drops. Part Ⅱ: Europe, Asia, and the globe. J Appl Meteor Climatol, 2009, 48(8): 1503-1526. doi:  10.1175/2009JAMC2073.1
    [18]
    Bernstein B, Campo W, Algodal L, et al. The Embraer-170 and -190 Natural Icing Flight Campaigns: Keys to Success//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006. DOI: 10.2514/6.2006-264.
    [19]
    DiVito S, Bernstein B C, Sims D L, et al. In-cloud Icing and Large-drop Experiment(ICICLE). Part Ⅰ: Overview//100th American Meteorological Society Annual Meeting. AMS, 2020. DOI: 10.21949/1524472.
    [20]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [21]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [22]
    Liu X L, Zhang Y, Liu D S. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. doi:  10.11898/1001-7313.20210609
    [23]
    Li H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm
    [24]
    Zhang R, Li H Y, Zhou X, et al. Shape recognition of DMT airborne cloud particle images and its application. J Appl Meteor Sci, 2021, 32(6): 735-747. doi:  10.11898/1001-7313.20210608
    [25]
    Zhang R, Zhou X, Li H Y, et al. Revisiting the size of nonspherical particles recorded by optical array probes with a new method based on the convex hull. Atmos Ocean Sci Lett, 2022, 15(3): 100136. doi:  10.1016/j.aosl.2021.100136
    [26]
    Liu C W, Guo X L, Duan W, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan. J Appl Meteor Sci, 2022, 33(2): 142-154. doi:  10.11898/1001-7313.20220202
    [27]
    Wang S, Zhang D G, Wang W Q, et al. Aircraft measurement of the vertical structure of a weak stratiform cloud in early winter. J Appl Meteor Sci, 2021, 32(6): 677-690. doi:  10.11898/1001-7313.20210604
    [28]
    Cheng P, Luo H, Chang Y, et al. Aircraft measurement of microphysical characteristics of a topographic cloud precipitation in Qilian Mountains. J Appl Meteor Sci, 2021, 32(6): 691-705. doi:  10.11898/1001-7313.20210605
    [29]
    Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi:  10.11898/1001-7313.20210607
    [30]
    Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
    [31]
    Zhu S C, Guo X L. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements. Acta Meteor Sinica, 2014, 72(2): 366-389. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201402013.htm
    [32]
    Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm
    [33]
    Chen Y, Ma P M, You L G. A case study of droplet spectra and liquid water content measurements in aircraft icing environments. Meteor Mon, 1989, 15(4): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198904006.htm
    [34]
    Li Q H, Qiao J J, Chen Z J. Natural icing flight test for Y7-200a aircraft. Fligh Dynam, 1999, 17(2): 64-69. doi:  10.3969/j.issn.1002-0853.1999.02.012
    [35]
    Wang Z L, Ni H B, Pei C C. A case study of helicopter natural icing flight test in arid areas of China. Desert Oasis Meteor, 2020, 14(2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202002009.htm
    [36]
    Sun J, Cai M, Wang F, et al. A case study of aircraft icing conditions in Anqing area. Meteor Mon, 2019, 45(10): 1341-1351. doi:  10.7519/j.issn.1000-0526.2019.10.001
    [37]
    Che Y, Zhang J, Fang C, et al. Aerosol and cloud properties over a coastal area from aircraft observations in Zhejiang, China. Atmos Environ, 2021, 267: 118771. doi:  10.1016/j.atmosenv.2021.118771
    [38]
    Cai Z X, Cai M, Li P R, et al. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China. Chinese J Atmos Sci, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm
    [39]
    Poore K D, Wang J, Rossow W B. Cloud layer thicknesses from a combination of surface and upper-air observations. J Climate, 1995, 8(3): 550-568. doi:  10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2
    [40]
    Bernstein B C, Rasmussen R M, McDonough F, et al. Keys to differentiating between small- and large-drop icing conditions in continental clouds. J Appl Meteor Climatol, 2019, 58(9): 1931-1953. doi:  10.1175/JAMC-D-18-0038.1
    [41]
    Wolff C, Mcdonough F, Bernstein B. An Examination of Aircraft Icing Conditions Associated with Cold Fronts. SAE Technical Paper, 2011-38-0020, 2011.
    [42]
    Wang L J, Yin Y, Li L G, et al. Analyses on typical autumn multi-layer stratiform clouds over the Sanjiangyuan National Nature Reserve with airborne observations. Chinese J Atmos Sci, 2013, 37(5): 1038-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305007.htm
    [43]
    Jeck R K. A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions. Flight Control Systems, 2001.
    [44]
    Jeck R. A Workable, Aircraft-specific Icing Severity Scheme//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, DOI: 10.2514/6.1998-94.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (1491) PDF downloads(239) Cited by()
    • Received : 2022-03-16
    • Accepted : 2022-07-07
    • Published : 2022-09-15

    /

    DownLoad:  Full-Size Img  PowerPoint