[1]
|
Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi: 10.11898/1001-7313.20220103
|
[2]
|
Jing X, He W B, Bi X, et al. Analysis of the abrupt rainstorm in north Shaanxi in relation to typhoon far away. J Appl Meteor Sci, 2005, 16(5): 655-662. doi: 10.3969/j.issn.1001-7313.2005.05.012
|
[3]
|
Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi: 10.11898/1001-7313.20200304
|
[4]
|
He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|
[5]
|
Noy I. The socio-economics of cyclones. Nature Clim Change, 2016, 6: 343-345. doi: 10.1038/nclimate2975
|
[6]
|
Zhang Q, Wu L, Liu Q. Tropical cyclone damages in China 1983-2006. Bull Amer Meteor Soc, 2009, 90(4): 489-496. doi: 10.1175/2008BAMS2631.1
|
[7]
|
Zhang Y H, Fan G Z, Ma Q Y, et al. The evaluation model of typhoon disaster influence on Zhejiang Province. J Appl Meteor Sci, 2009, 20(6): 772-776. doi: 10.3969/j.issn.1001-7313.2009.06.017
|
[8]
|
|
[9]
|
|
[10]
|
|
[11]
|
|
[12]
|
Li M, Zhang S Q, Wu L X, et al. An examination of the predictability of tropical cyclone genesis in high-resolution coupled models with dynamically downscaled coupled data assimilation initialization. Adv Atmos Sci, 2020, 37(9): 939-950. doi: 10.1007/s00376-020-9220-9
|
[13]
|
|
[14]
|
Sun J, Cao Z, Li Heng, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[15]
|
Chen R, Zhang W M, Wang X. Machine learning in tropical cyclone forecast modeling: A review. Atmosphere, 2020, 11(7): 676-704. doi: 10.3390/atmos11070676
|
[16]
|
Wang Z, Zhao J, Huang H, et al. A review on the application of machine learning methods in tropical cyclone forecasting. Front Earth Sci, 2022. DOI: 10:10.3389/feart.2022.902596.
|
[17]
|
|
[18]
|
Rumpf J, Weindl H, Höppe P, et al. Stochastic modeling of tropical cyclone tracks. Math Method Oper Res, 2007, 66: 475-490. doi: 10.1007/s00186-007-0168-7
|
[19]
|
Rumpf J, Weindl H, Höppe P, et al. Tropical cyclone hazard assessment using model-based track simulation. Nat Hazards, 2009, 48: 383-398. doi: 10.1007/s11069-008-9268-9
|
[20]
|
Emanuel K, Ravela S, Vivant E, et al. A statistical deterministic approach to hurricane risk assessment. Bull Amer Meteor Soc, 2006, 87(3): 299-314. doi: 10.1175/BAMS-87-3-299
|
[21]
|
|
[22]
|
Chan J C L, Shi J. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys Res Lett, 1996, 23(20): 2765-2767. doi: 10.1029/96GL02637
|
[23]
|
Chan J C L, Liu K S. Global warming and western North Pacific typhoon activity from an observational perspective. J Climate, 2004, 17(23): 4590-4602. doi: 10.1175/3240.1
|
[24]
|
|
[25]
|
Chen G H, Tam C Y. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett, 2010, 37(1): L01803.
|
[26]
|
Tan J K, Liu H X, Li M Y, et al. A prediction scheme of tropical cyclone frequency based on lasso and random forest. Theor Appl Climatol, 2018, 133: 973-983. doi: 10.1007/s00704-017-2233-3
|
[27]
|
Zhao J P, Wu L G, Zhao H K, et al. Improvement of tropical cyclone genesis potential index in the western North Pacific Basin. J Meteor Sci, 2012, 32(6): 591-599. doi: 10.3969/2012jms.0110
|
[28]
|
Tippett M K, Camargo S J, Sobel A H. A poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J Climate, 2011, 24(9): 2335-2357. doi: 10.1175/2010JCLI3811.1
|
[29]
|
Wu T T. Optimization and Verification of the Statistical Dynamics-full Track Synthesis Method for Typhoon Hazard Analysis. Shenzhen: Harbin Institute of Technology, 2020.
|
[30]
|
Wijnands J S, Shelton K, Kuleshov Y. Improving the operational methodology of tropical cyclone seasonal prediction in the Australian and the South Pacific Ocean regions. Adv Meteor, 2014, 2014(1): 1-8.
|
[31]
|
Richman M B, Leslie L M, Ramsay H A, et al. Reducing tropical cyclone prediction errors using machine learning approaches. Procedia Comput Sci, 2017, 114: 314-323. doi: 10.1016/j.procs.2017.09.048
|
[32]
|
Liu H, Zhang D L, Chen J, et al. Prediction of tropical cyclone frequency with a wavelet neural network model incorporating natural orthogonal expansion and combined weights. Nat Hazards, 2013, 65(1): 63-78. doi: 10.1007/s11069-012-0343-x
|
[33]
|
Hai Y. Using Artificial Neural Network Model to Predict the Frequency and Probability of Tropical Cyclones in the Northwest Pacific. Chengdu: Chengdu University of Information Technology, 2019.
|
[34]
|
Vickery P J, Skerlj P F, Twisdale L A. Simulation of hurricane risk in the US using empirical track model. J Struct Eng ASCE, 2000, 47(10): 2497-2517.
|
[35]
|
Yonekura E, Hall T M. A statistical model of tropical cyclone tracks in the western North Pacific with ENSO-dependent cyclogenesis. J Appl Meteor Climatol, 2011, 50(8): 1725-1739. doi: 10.1175/2011JAMC2617.1
|
[36]
|
|
[37]
|
Breiman L. Bagging predictors. Mach Learn, 1996, 26(2): 123-140.
|
[38]
|
Ho T K. Random Decision Forests. The 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 1995.
|
[39]
|
Ho T K. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal, 1998, 20(8): 832-844. doi: 10.1109/34.709601
|
[40]
|
Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific. Climate Dyn, 1994, 9(6): 303-319. doi: 10.1007/BF00204745
|
[41]
|
Ault T R, Cole J E, Evans M N, et al. Intensified decadal variability in tropical climate during the late 19th century. Geophys Res Lett, 2009, 36(8): 134-150.
|
[42]
|
Chen G H, Huang R H. The effect of warm pool thermal states on tropical cyclone in west Northwest Pacific. J Trop Meteor, 2006, 22(6): 527-532. doi: 10.3969/j.issn.1004-4965.2006.06.002
|
[43]
|
Gray W M. Global view of the origin of tropical disturbances and storms. Mon Wea Rev, 1968, 96(10): 87.
|
[44]
|
|