Mao Zhiyuan, Fu Danhong, Huang Yanbin, et al. Peripheral cloud system structure and precipitation characteristics of Typhoon Bebinca(1816). J Appl Meteor Sci, 2022, 33(5): 604-616. DOI:  10.11898/1001-7313.20220508.
Citation: Mao Zhiyuan, Fu Danhong, Huang Yanbin, et al. Peripheral cloud system structure and precipitation characteristics of Typhoon Bebinca(1816). J Appl Meteor Sci, 2022, 33(5): 604-616. DOI:  10.11898/1001-7313.20220508.

Peripheral Cloud System Structure and Precipitation Characteristics of Typhoon Bebinca(1816)

DOI: 10.11898/1001-7313.20220508
  • Received Date: 2020-03-17
  • Rev Recd Date: 2022-06-17
  • Publish Date: 2022-09-15
  • Based on radar and raindrop disdrometer observations, the evolution of microphysical features and raindrop size distribution of the precipitation in different peripheral cloud system structures during Typhoon Bebinca(1816) affecting Hainan Island are compared at Haikou and Tunchang stations. The results show that, convective cloud system in Haikou area strengthens with the development of precipitation cloud system, while in Tunchang area stratiform cloud precipitation is dominant, which causes some differences between raindrop size distributions. During the entire precipitaion process, the average raindrop size distribution of Haikou and Tunchang stations are unimodal spectrum, the number concentration of 1 mm raindrops at Tunchang Station is larger, while there are more large raindrops at Haikou Station. The raindrops observed at Haikou and Tunchang stations are mainly with a diameter of less than 1 mm, and the raindrop number concentration accounts for over 50% of the total concentration, but its contribution to the rain intensity is 3.7% and 17.15%, respectively. The raindrops with a diameter of 1-3 mm at Tunchang Station contributes the most to the rain intensity, reaching 79.84%. The raindrop number concentration of Haikou Station decreases with the increase of raindrop diameter, but its contribution to the rainfall intensity increases, and the contribution of raindrops with diameter greater than 3 mm to the total rainfall intensity reaches 56.61%. Comparing the evolution of microphysical parameters, the characteristic parameter curve of Haikou Station is unevenly distributed in time, showing paroxysmal heavy precipitation, while the characteristic parameter curve of Tunchang Station has little fluctuation, and the precipitation is smaller, uniform, and continuous than that of Haikou Station. In the time evolution of raindrop size distribution, Haikou Station is always in the form of single peak with a wider spectrum, while at Tunchang Station it is mainly single peak, with fewer double peaks. When the rainfall intensity increases, the raindrop size distribution at both stations increases in the diameter range of 1 mm, the spectrum width expands rapidly, and the large-scale raindrops will increase in number, especially the large scale raindrops with a diameter of more than 3 mm at Haikou Station. However, the increase in the number concentration of small-scale raindrops does not lead to an increase in rainfall intensity. The raindrop size distribution conforms to Gamma distribution, and the slope parameter and shape parameter comply with binomial relationship.
  • Fig. 1  Cumulative precipitation in Hainan Island from 0000 BT 14 Aug to 0000 BT 15 Aug(a) and from 0000 BT 15 Aug to 0000 BT 16 Aug(b) in 2018

    Fig. 2  Hourly precipitation at Haikou and Tunchang stations from 0000 BT 14 Aug to 0000 BT 16 Aug in 2018

    Fig. 3  Radar composite reflectivity factor of Typhoon Bebinca(1816) from 2209 BT 14 Aug to 0035 BT 16 Aug in 2018

    Fig. 4  Total number raindrop concentration, rain intensity, randrop maximum diameter, raindrop mean diameter and raindrop size distribution at Haikou and Tunchang stations on 15 Aug 2018

    Fig. 5  Average raindrop size distribution

    Fig. 6  Average raindrop size distribution under different rainfall intensity (I, unit:mm·h-1)

    Fig. 7  Contribution of raindrops at different diameters for total number concentration and total rainfall intensity

    Fig. 8  Average raindrop size distribution and Gamma fit results

    Fig. 9  Distribution of λ and μ

  • [1]
    Chen L S, Men Z Y. An overview on tropical cyclone research progress in China during the past ten years. Chinese J Atmos Sci, 2001, 25(3): 420-432. doi:  10.3878/j.issn.1006-9895.2001.03.11
    [2]
    Liu L, Chen M Q, Li Y, et al. Features and diagnostic analysis of rapid intensity change of super Typhoon Rammasun over China offshore waters. Meteor Sci Technol, 2015, 43(6): 1149-1156. doi:  10.3969/j.issn.1671-6345.2015.06.022
    [3]
    Xue Y D, Cui X P. Moisture sources and quantitativeanalyses of sourcecontributions of precipitation associated with Rammasun(1409). Chinese J Atmos Sci, 2020, 44(2): 341-355. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202002009.htm
    [4]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [5]
    Marks F D Jr, Houze R A Jr. Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J Atmos Sci, 1987, 44(9): 1296-1317. doi:  10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2
    [6]
    Houze R A Jr, Marks F D Jr, Black R A. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part Ⅱ: Mesoscale distribution of ice particles. J Atmos Sci, 1992, 49(11): 943-963. doi:  10.1175/1520-0469(1992)049<0943:DAIOTI>2.0.CO;2
    [7]
    Black R A, Hallett J. Electrification of the hurricane. J Atmos Sci, 1999, 56(12): 2004-2028. doi:  10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2
    [8]
    DeMaria M, DeMaria R T, Knaff J A, et al. Tropical cyclone lightning and rapid intensity change. Mon Wea Rev, 2012, 140(6): 1828-1842. doi:  10.1175/MWR-D-11-00236.1
    [9]
    Stevenson N S, Corbosiero K L, Demaria M, et al. A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change. Wea Forecasting, 2018, 33(1): 23-36. doi:  10.1175/WAF-D-17-0096.1
    [10]
    Ding J C, Huang Y, Ye Q X, et al. GPS observation and analysis of precipitable water vapor during Typhoon Ramasun in 2002 influencing East China coast. Chinese J Atmos Sci, 2004, 28(4): 613-624. doi:  10.3878/j.issn.1006-9895.2004.04.13
    [11]
    He H Z, Cheng M H, Zhou F X. 3D structure of rain and cloud hydrometeors for Typhoon Kujira(0302). Chinese J Atmos Sci, 2006, 30(3): 491-503. doi:  10.3878/j.issn.1006-9895.2006.03.12
    [12]
    Fu Y F, Liu D, Wang Y, et al. Characteristics of precipitating and non-precipitating clouds in Typhoon Ranan as viewed by TRMM combined measurements. Acta Meteor Sinica, 2007, 65(3): 316-328. doi:  10.3321/j.issn:0577-6619.2007.03.002
    [13]
    Ding D P, Li Y. A study on rainfall features of Beijing associated with typhoons. Acta Meteor Sinica, 2009, 67(5): 864-874. doi:  10.3321/j.issn:0577-6619.2009.05.017
    [14]
    Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi:  10.11898/1001-7313.20210306
    [15]
    Fang M, He J T, Fu Y M, et al. The precipitation structure for super Typhoon Maria(1808) base on GPM satellite rainfall products. Trans Atmos Sci, 2019, 42(6): 845-854. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201906005.htm
    [16]
    Liu J, Jiang J Y. Multi-scale satellite data sensitivity study on cloud analysis of strong typhoon. J Appl Meteor Sci, 2014, 25(1): 1-10. http://qikan.camscma.cn/article/id/20140101
    [17]
    Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [18]
    Chen B J, Wang Y, Ming J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot. J Trop Meteor, 2012, 18(2): 162-171.
    [19]
    Li X L, Pan X J, Tong Y X, et al. Raindrop spectral characteristics of two different types of heavy precipitation based on raindrop spectral data. Meteor Sci Technol, 2019, 47(2): 321-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201902017.htm
    [20]
    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [21]
    Shen G H, Gao A C, Li J. Analysis of the characteristics of raindrop spectrum in different heavy precipitation centers caused by Typhoon "Lekima". J Meteor Sci, 2020, 40(1): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202001011.htm
    [22]
    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [23]
    Yang R Y, Min J Z, Feng W. Numerical simulations of the Hainan Island topographic effects on the rainfall of west-going typhoons. J Trop Meteor, 2013, 29(3): 474-480. doi:  10.3969/j.issn.1004-4965.2013.03.014
    [24]
    Wu S A, Guo D Y, Yang J H. Hainan tropic cyclone rainfall's climate characters. J Meteor Sci, 2007, 27(3): 307-311. doi:  10.3969/j.issn.1009-0827.2007.03.011
    [25]
    Xu X C, Zheng Y, Liu L J. Comparatively analysis and seasonal characteristics of loading typhoon in Hainan. J Guangxi Meteor, 2004, 25(3): 14-17. doi:  10.3969/j.issn.1673-8411.2004.03.005
    [26]
    Liu S J, Zhang J H, He Z W, et al. Estimate of topography influences on precipitation distribution during typhoon process in Hainan Island. J Nat Disaster, 2011, 20(2): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201102030.htm
    [27]
    Zhao F Z, Wang F, Zheng Y. The effects of intensity and structure differences between Tyhoons "Nesat" and "Nalgae" on the distribution of rainstorm in Hainan Island. Guangdong Meteor, 2013, 35(2): 14-20. doi:  10.3969/j.issn.1007-6190.2013.02.003
    [28]
    Xu H, Cheng P, Wang R L. Simulation and diagnostic analysis of a rainstorm process influenced by Typhoon Haiyan(2013) on Hainan Island. J Arid Meteor, 2016, 34(3): 503-510. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201603013.htm
    [29]
    Xing C Y, Zhang J H, Che X F, et al. Evaluation research of typhoon meteorological service benefits in Hainan Province. Meteor Enviro Sci, 2019, 42(4): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201904009.htm
    [30]
    Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi:  10.11898/1001-7313.20170306
    [31]
    Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi:  10.11898/1001-7313.20210302
    [32]
    Mao Z Y, Huang G R, Huang Y B, et al. Characteristics analysis of raindrop size distribution during Hainan autumn rainstorm process. Nat Sci J Hainan Univ, 2020, 38(1): 59-66.
    [33]
    Liao F, Deng H, Wang Q L, et al. Observation studies on characteristics of raindrop size distribution of two typical summer thunderstorm case in the Pear River Delta. Plateau Meteor, 2011, 30(3): 798-808. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103027.htm
    [34]
    Wang K F, Zhang H H, Zhang W, et al. The detection and elimination of a abnormal data for the precipitation observed by Parsivel precipitation partical spectrometer. J Meteor Sci, 2011, 31(6): 732-736. doi:  10.3969/j.issn.1009-0827.2011.06.009
    [35]
    Hu Z H, Pu J P, Zhang H, et al. Feasibility analyses and recommendations of Parsivel option distrometer in measurements of strong precipitaion. J Meteor Sci, 2014, 34(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201401004.htm
    [36]
    Zhang F W, Zhang Y X, Han S P, et al. Raindrop spectrum characterisctics during a short-time strong rainfall on 6 May 2015 in Wansheng of Chongqing. Desert Oasis Meteor, 2019, 13(4): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201904007.htm
    [37]
    Ulbrich C W. Natural variations in the analytical form of the rain-drop size distribution. J Climate Appl Meteor, 1983, 22(10): 1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [38]
    Marshall J S, Palmer W M. The distribution of raindrops with size. J Atmos Sci, 1948, 5(4): 165-166.
    [39]
    Pu J P, Zhang W, Jiang A J, et al. Characteristics of gamma raindrop size distribution base on the precipitation particle spectrometer. J Meteor Sci, 2010, 30(5): 701-707. doi:  10.3969/j.issn.1009-0827.2010.05.018
    [40]
    Zhou L M, Wang Q, Gong D L, et al. Analysis of microphysical characteristics on a turning precipitation in Shangdong Province in spring of 2015. J Arid Meteor, 2016, 34(4): 678-684. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201604012.htm
    [41]
    Chen Z J, Hu X F, Chen B J, et al. Raindrop size distribution of rainstorm in central-southern Hebei Province. J Arid Meteor, 2019, 37(4): 586-596. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201904008.htm
    [42]
    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [43]
    Zheng J H, Chen B J. Comparative study of exponential and gamma function fits to observed raindrop size distribution. J Meteor Sci, 2007, 27(1): 17-25. doi:  10.3969/j.issn.1009-0827.2007.01.003
    [44]
    Vivekanandan J, Zhang G, Brandes E. Polarimetric radar estimators based on a constrained gamma drop size distribution model. J Appl Meteor, 2004, 43(2): 217-230. doi:  10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2
    [45]
    Chen C, Yin Y, Chen B J. Raindrop size distribution at different altitudes in Mt Huang. Trans Atmos Sci, 2015, 38(3): 388-395. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503011.htm
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (838) PDF downloads(87) Cited by()
    • Received : 2020-03-17
    • Accepted : 2022-06-17
    • Published : 2022-09-15

    /

    DownLoad:  Full-Size Img  PowerPoint