Ren Suling, Niu Ning, Qin Danyu, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. DOI:  10.11898/1001-7313.20220605.
Citation: Ren Suling, Niu Ning, Qin Danyu, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. DOI:  10.11898/1001-7313.20220605.

Extreme Cold and Snowstorm Event in North America in February 2021 Based on Satellite Data

DOI: 10.11898/1001-7313.20220605
  • Received Date: 2022-08-05
  • Rev Recd Date: 2022-10-15
  • Available Online: 2022-11-21
  • Publish Date: 2022-11-17
  • Using meteorological satellite data and the reanalysis dataset from European Centre for Medium Range Weather Forecasts(ERA5) and others, based on the accuracy evaluation of FY-3D/VASS temperature in North America, the climatic background, development and evolution of North America winter storm Uri in 2021, the triggering effects of polar vortex activities on Uri and the characteristics of atmospheric environment causing extreme low temperature and snowfall are studied. The results show that the average absolute error of FY-3D/VASS temperature at 100, 400 hPa and 850 hPa are 1.14℃, 1.44℃ and 2.63℃ respectively. It shows that FY-3D/VASS temperature can meet the demand of global extreme cold event monitoring, and it is an important data source in regions where conventional meteorological observation is insufficient. FY-3D/VASS temperature analysis shows that in February 2021, when winter storm Uri is active, the temperature in the western part of the key area of polar cold air activity in North America (50°-150°W, 50°-80°N) is 4-8℃ lower than climate mean. The cold air intensity is the strongest in the first ten days of February, and the maximum percentage of temperature anomaly is about 70%. Under the guidance of the warm high ridge in the northeast Pacific, the polar vortex intensifies and extends southward, and the cold air breaks out southward during the vertical rotation of the horizontal trough on the west side of the polar vortex center. The abnormal southward extension of the upper troposphere potential vorticity in high latitude provides upper-level dynamic forcing for the formation of Uri. The cold air in the low layer extends southward and intersects with the warm and humid airflow transported northward over the Gulf of Mexico along the west side of the subtropical high in southern United States. They trigger the low-level vortex of storm Uri and the rapid development of cloud system. The cloud causing strong snowfall of storm Uri shows convective characteristics, with the cloud top brightness temperature reaching lower than -40℃ and even lower than -52℃ in some areas. Lightning is also active in the storm cloud system which causes heavy snow.
  • Fig. 1  Scatterplot density of FY-3D/VASS temperature against that of ERA5 temperature in North America(10°-85°N,50°-150°W) in Feb 2021

    Fig. 2  Mean bias of FY-3D/VASS temperature against ERA5 temperature in Feb 2021

    Fig. 3  FY-3D/VASS average temperature and its anomaly at 850 hPa in 2021

    (a)average temperature anomaly in Feb, (b)average temperature from 1 Feb to 7 Feb, (c)average temperature anomaly from 1 Feb to 7 Feb

    Fig. 4  Time series of regional average temperature at 850 hPa from 1 Feb to 28 Feb in 2021 )

    (a)regional average FY-3D/VASS temperature(blue line denotes region of 50°-80°N, 50°-150°W, black line denotes region of 50°-80°N, 100°-150°W) and climate regional ERA5 temperature(red line denotes region of 50°-80°N,100°-150°W), (b)regional average FY-3D/VASS temperature anomaly(50°-80°N,100°-150°W), (c)percentage of regional average FY-3D/VASS temperature anomaly(50°-80°N, 100°-150°W

    Fig. 5  Daily mean FY-3D cloud top temperature(the shaded) and ERA5 geopotential height(the contour, unit:dagpm) at 850 hPa from 13 Feb to 16 Feb in 2021

    (the red dot and line denote the storm center and moving path, respectively)

    Fig. 6  Daily mean FY-3D/VASS temperature(the shaded) at 850 hPa and ERA5 geopotential height (the contour, unit:dagpm) at 500 hPa on 10 Feb, 11 Feb, 13-16 Feb in 2021

    Fig. 7  FY-3D/VASS temperature(the shaded) at 500 hPa, ERA5 wind(the vector) at 500 hPa and potential vorticity(the isoline, unit:PVU) at 200 hPa on 10 Feb and 13 Feb in 2021

    Fig. 8  Vertical distribution of FY-3D/VASS temperature(the shaded), ERA5 zonal wind(the black isoline, unit:m·s-1) and potential vorticity(the white isoline, unit:PVU) along 105°W on 10 Feb and 13 Feb in 2021

    Fig. 9  GSMaP_Gauge precipitation in 24 h from 13 Feb to 16 Feb in 2021

    Fig. 10  FY-3D/VASS specific humidity(the shaded, the blue isoline denotes 3 g·kg-1) and ERA5 wind(the vector) at 850 hPa in Feb 2021

    Fig. 11  Convection and flash from geostationary meteorological satellites in 2021

    (a)convection frequency from GridSat from 12 Feb to 17 Feb(the shaded denotes frequency of cloud top brightness temperature lower than -32℃, the blue isoline denotes frequency of cloud top brightness temperature lower than -42℃(greater than 6%), unit:%), (b)the cloud top brightness temperature from GridSat at 2100 UTC 15 Feb, (c)total number of flash from GOES-R GLM from 14 Feb to 17 Feb, (d)total number of flash from GOES-R GLM from 2000 UTC to 2200 UTC on 15 Feb

    Table  1  Accuracy of FY-3D/VASS temperature in North America(10°-85°N,50°-150°W) in Feb 2021

    气压层/hPa 样本量 相关系数 平均偏差/℃ 绝对偏差/℃ 均方根误差/℃
    100 7736865 0.98 0.17 1.14 1.71
    400 8863018 0.99 -0.22 1.44 1.94
    700 8858121 0.98 -0.21 1.92 2.66
    850 8475087 0.97 -0.48 2.63 3.56
    DownLoad: Download CSV
  • [1]
    Valipour M, Bateni S M, Jun C.Global surface temperature:A new insight.Climate, 2021, 9(5):81. doi:  10.3390/cli9050081
    [2]
    Wu B Y, Li Z K, Francis J A, et al. A recent weakening of winter temperature association between Arctic and Asia. Environ Res Lett, 2022, 17(3): 034030. doi:  10.1088/1748-9326/ac4b51
    [3]
    Zhang H D, Gao S T, Liu Y. Advances of research on polar vortex. Plateau Meteor, 2008, 27(2): 452-461.
    [4]
    Dong X Y, Wu B Y. Dynamic linkages between heat wave events in Jianghuai Region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404
    [5]
    Willett H C. Long-period fluctuations of general circulation of the atmosphere. J Atmos Sci, 1949, 6: 34-50.
    [6]
    Liu C F, Gao B. Climate of chilling damage in spring in Southern China and its atmospheric circulation features. J Trop Meteor, 2001, 17(2): 179-187. doi:  10.3969/j.issn.1004-4965.2001.02.010
    [7]
    Jiang Z B, Wang P X, Wu X, et al. Spatial-temporal variations of polar vortex anomaly over Northern Hemisphere in winter. Trans Atmos Sci, 2013, 36(2): 202-216. doi:  10.3969/j.issn.1674-7097.2013.02.009
    [8]
    Yang J, Qian Y F. Climate characteristics of monthly mean height field on 30 hPa in stratosphere. Plateau Meteor, 2005, 24(2): 152-159. doi:  10.3321/j.issn:1000-0534.2005.02.004
    [9]
    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [10]
    Zhang J W, Li D L, Liu Y J. New features of polar vortex and its impact on winter temperature of China. Plateau Meteor, 2014, 33(3): 721-732. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201403014.htm
    [11]
    Laseur N E. On asymmetry of the middle latitude circumpolar current. J Atmos Sci, 1954, 11(1): 43-57.
    [12]
    Angell J K. Contraction of the 300 mb north circumpolar vortex during 1963-1997 and its movement into the eastern hemisphere. J Geophys Res, 1998, 103(D20): 25887-25893. doi:  10.1029/98JD02451
    [13]
    Lukens K E, Berbery E H, Hodges K I. The imprint of strong-storm tracks on winter weather in North America. J Climate, 2018, 31(5): 2057-2074. doi:  10.1175/JCLI-D-17-0420.1
    [14]
    Stephen J C. Winter cyclone frequencies over the eastern United States and adjacent western Atlantic 1964-1973. Bull Amer Meteor Soc, 1976, 57(5): 548-553.
    [15]
    Hoskins B J, Hodges K I. New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci, 2002, 59(6): 1041-1061.
    [16]
    Eichler T P, Gaggini N, Pan Z. Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J Geophys Res Atmos, 2013, 118(10): 3919-3932.
    [17]
    Zheng C, Chang E K, Kim H M, et al. Impacts of the Madden-Julian oscillation on storm track activity, surface air temperature, and precipitation over North America. J Climate, 2018, 31(15): 6113-6134.
    [18]
    Rasmijn L M, Schrier G, Barkmeijer J, et al. Simulating the extreme 2013/2014 winter in a future climate. J Geophys Res Atmos, 2016, 121(10): 5680-5698.
    [19]
    James D G, David J F, Upmanu L, et al. How unprecedented was the February 2021 Texas cold snap. Environ Res Lett, 2021, 16(6): 064056.
    [20]
    Zhang P, Guo Q, Chen B Y, et al. The Chinese next-generation geostationary meteorological satellite FY-4 compared with the Japanese Himawari-8/9 satellites. Adv Meteor Sci Tech, 2016, 6(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201601026.htm
    [21]
    Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellite Fengyun-4. Bull Amer Meteor Soc, 2017, 98(8): 1637-1658.
    [22]
    Zhang Z Q, Lu F, Fang X, et al. Application and development of FY-4 meteorological satellite. Aerospace Shanghai, 2017, 34(4): 8-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704002.htm
    [23]
    Zhang P, Hu X Q, Lu Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit. Adv Atmos Sci, 2022, 39(1): 1-8.
    [24]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Roy Meteor Soc, 2020, 146(730): 1999-2049.
    [25]
    Xian D, Zhang P, Gao L, et al. Fengyun meteorological satellite products for earth system science applications. Adv Atmos Sci, 2021, 38(8): 1267-1284.
    [26]
    Gu S Y, Wang Z Z, Li J, et al. The radiometric characteristics of sounding channels for FY-3A/MWHS. J Appl Meteor Sci, 2010, 21(3): 335-341. http://qikan.camscma.cn/article/id/20100309
    [27]
    Guo Y, Lu N M, Gu S Y, et al. Radiometric characteristics of FY-3C microwave humidity and temperature sounder. J Appl Meteor Sci, 2014, 25(4): 436-444. http://qikan.camscma.cn/article/id/20140406
    [28]
    Zhang P, Yang H, Qiu H, et al. Quantitative remote sensing from the current Fengyun 3 satellites. Adv Meteor Sci Tech, 2012, 2(4): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201204005.htm
    [29]
    Zhuang G T. Technical Review of National High Impact Weather Monitoring and Forecasting Service(2021). Beijing: China Meteorological Press, 2022.
    [30]
    Zeng Z M, Yan Z W. Analysis on the significant of global warming trends during the last 100 years. J Appl Meteor Sci, 1998, 10(SupplⅠ): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX9S1.003.htm
    [31]
    Yang Z D, Zhang P, Gu S Y, et al. Application and development of FY-3 meteorological satellite. Aerospace Shanghai, 2017, 34(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201704001.htm
    [32]
    Knapp K R, Ansari S, Bain C L, et al. Globally gridded satellite(GridSat) observations for climate studies. Bull Amer Meteor Soc, 2011, 92: 893-907.
    [33]
    Hou A Y, Kakar R K, Neek S, et al. The global precipitation measurement mission. Bull Amer Meteor Soc, 2014, 95: 701-722.
    [34]
    Rutledge S A, Hilburn K A, Clayton A, et al. Evaluating geostationary lightning mapper flash rates within intense convective storms. J Geophys Res Atmos, 2020, 125, e2020JD032827.
    [35]
    Hoskins B J, Mclntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc, 1985, 111(470): 877-946.
    [36]
    Fang X, Ren S L, Li Y, et al. Weather Analysis and Forecasting Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis. Beijing: Science Press, 2008.
    [37]
    He L F, Chyi D, Yu W. Development mechanisms of the Yellow Sea and Bohai Sea cyclone causing extreme snowstorm in Northeast China. J Appl Meteor Sci, 2022, 33(4): 385-399. doi:  10.11898/1001-7313.20220401
    [38]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [39]
    Chen H X, Chen Y, Lu E, et al. Anomalous moisture and temperature characteristics in precipitation process during January 2008 heavy snowstorm in China. J Appl Meteor Sci, 2015, 26(5): 525-535. doi:  10.11898/1001-7313.20150502
    [40]
    Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi:  10.11898/1001-7313.20200206
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (645) PDF downloads(77) Cited by()
    • Received : 2022-08-05
    • Accepted : 2022-10-15
    • #*
    • 网络出版日期:  2022-11-21
    • *#
    • Published : 2022-11-17

    /

    DownLoad:  Full-Size Img  PowerPoint