Huo Zhiguo, Zhang Haiyan, Li Chunhui, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. DOI:  10.11898/1001-7313.20230101.
Citation: Huo Zhiguo, Zhang Haiyan, Li Chunhui, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. DOI:  10.11898/1001-7313.20230101.

Review on High Temperature Heat Damage of Maize in China

DOI: 10.11898/1001-7313.20230101
  • Received Date: 2022-07-13
  • Rev Recd Date: 2022-11-23
  • Publish Date: 2023-01-31
  • As the climate warms, the threat of high temperature to China's maize production is increasing. Starting from the concept and classification of high temperature heat damage, the research progress is systematically summarized, expounding the hazard mechanism, meteorological causes, disaster causative indicators, spatial and temporal distribution and defense countermeasure of high temperature heat damage of maize, and the future research trend is also discussed. The high temperature heat damage of maize in China has a long duration, and its impacts can be divided into four categories:Delay, obstacle, poor growth and mixed. High temperature reduces the photosynthetic rate of maize, weakens pollen activity, inhibits the scattering of powder, shortens the filling time, and causes the yield and quality of maize to decrease. The high temperature and heat damage weather in maize growing areas is mainly caused by abnormal circulation and affected by the degree of atmospheric dryness. The meteorological causes, main types and occurrence periods of high temperature and heat damage are different in each dominant maize region. The disaster indicators include physiological and biochemical indicators and meteorological indicators, but there is no clear and unified standard for distinguishing high-temperature heat damage in maize at present. In the past 10 years, the intensity and frequency of heat damage of maize have increased. High temperature and heat damage of spring maize mostly occurs in flowering and pollination period, and the risk is higher in northeast Liaoning and southwest of Northeast China. High temperature heat damage of summer maize is more likely to occur after the jointing period, and is more frequent in southeastern Hebei Province, most of Henan Province and western Shandong Province. There are two methods to prevent the high-temperature heat damage of maize. The research on monitoring and early warning of high-temperature heat damage is still in its infancy, and the adverse effects of high-temperature heat damage on maize can be reduced by selecting appropriate field cultivation and management measures. The future research should focus on establishing a comprehensive dynamic maize high temperature heat damage index system, strengthening the simulation and risk assessment and further developing a refined monitoring and early warning service system.
  • Table  1  Statistical table of discrimination index of high temperature and heat damage of maize

    发育阶段 温度阈值(日最高气温) 研究区域 参考文献
    生育期 不小于30℃ 东北农作区 [70]
    生育期 不小于32℃ 中国玉米区 [53]
    生育期 不小于32℃ 黄淮海玉米区 [60]
    生育期 不小于35℃ 海河平原 [48]
    生育期 不小于30,32,35℃ 京津冀地区 [68]
    生育期 85%,90%分位值 海河平原 [71]
    生育期 95%分位值 中国玉米区 [72]
    花期 不小于32,35℃ 河南省 [63-64]
    花期 不小于34℃ 黄淮海玉米区 [65]
    花期 不小于32,34℃ 河北平原 [66]
    花期 不小于35℃ 淮北平原 [93]
    花期 不小于35℃ 华北平原 [61-62]
    花期 不小于35℃ 河南省 [92]
    拔节期前 不小于35.2℃ 山东省 [67]
    拔节期后 不小于34.5℃ 山东省 [67]
    吐丝-成熟 不小于35℃ 湖南省春玉米区 [79]
    播种-出苗 不小于31℃ 中国北方地区 [69]
    出苗-抽雄 不小于33℃ 中国北方地区 [69]
    抽雄-吐丝 不小于35℃ 中国北方地区 [69]
    吐丝-成熟 不小于33℃ 中国北方地区 [69]
    DownLoad: Download CSV
  • [1]
    IPCC.Climate Change 2022:Impacts, Adaptation and Vulnerability.Cambridge:Cambridge University Press, 2022.
    [2]
    Bassu S, Brisson N, Durand J L, et al. How do various maize crop models vary in their responses to climate change factors?. Global Change Biol, 2014, 20(7): 2301-2330. doi:  10.1111/gcb.12520
    [3]
    Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114(35): 9326-9331. doi:  10.1073/pnas.1701762114
    [4]
    Lobell D B, Marshall B B. On the use of statistical models to predict crop yield responses to climate change. Agric For Meteor, 2010, 150(11): 1443-1452. doi:  10.1016/j.agrformet.2010.07.008
    [5]
    Ma J L, Maystadt J F. The impact of weather variations on maize yields and household income: Income diversification as adaptation in rural China. Global Environ Change, 2017, 42: 93-106. doi:  10.1016/j.gloenvcha.2016.12.006
    [6]
    Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by heat and drought in 2003. Nature, 2005, 437(7058): 529-533. doi:  10.1038/nature03972
    [7]
    Ren H, Liu P, Dong S T, et al. Research advancements of effect of high temperature stress on growth and development of maize. J Maize Sci, 2019, 27(5): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201905016.htm
    [8]
    Zhao M S, Li S Y, Lu Y C, et al. Effects and countermeasures of high temperature stress on summer maize production in Anhui Province. Anhui Agric Sci Bull, 2021, 27(18): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNB202118013.htm
    [9]
    Feng M, Liu A G, Wu Y C, et al. Temperature Index of High Temperature Harm for Main Crops(GB/T 21985-2008). 2008.
    [10]
    Yang J Y, Huo Z G, Wang P J, et al. Occurrence characteristics of early rice heat disaster in Jiangxi Province. J Appl Meteor Sci, 2020, 31(1): 42-51. doi:  10.11898/1001-7313.20200104
    [11]
    Li H L, Wang J H, Zhang W M, et al. Effects of high temperature stress on leaf chlorophyll fluorescence characteristics of kiwifruit. J Appl Meteor Sci, 2021, 32(4): 468-478. doi:  10.11898/1001-7313.20210408
    [12]
    Zheng Y J, Yang Z Q, Wang L, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. doi:  10.11898/1001-7313.20210405
    [13]
    Luo L W. Survey and evaluation of high temperature and drought disaster in summer tea gardens in Zhejiang Province in 2013. China Tea, 2013, 35(9): 17. https://www.cnki.com.cn/Article/CJFDTOTAL-CAYA201309013.htm
    [14]
    China Meteorological Administration. Yearbook of Meteorological Disasters in China. Beijing: China Meteorological Press, 2015.
    [15]
    Deng A J, Liu K Q, Liu M, et al. Investigation and analysis for the influence of heat damage made onto middle rice in Hubei Province in 2016. Hubei Agric Sci, 2017, 56(17): 3260-3264;3291. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201717017.htm
    [16]
    Guo Z R, Zhao Y L. Characteristics and prevention strategies of summer maize high temperature damage in Dengzhou City. Bull Agric Sci Technol, 2020(3): 169-171.
    [17]
    LeComte D. US weather highlights 2012: Heat, drought, and sandy. Weatherwise, 2013, 66(3): 12-19. doi:  10.1080/00431672.2013.781839
    [18]
    Feng H K, Zang J L, Wan B H, et al. Effects of persistent high temperature and drought on summer maize production in Pingyu County in 2013 and countermeasures. Crops, 2014(2): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201402032.htm
    [19]
    Liang S Q, Du D Q, Song Z M, et al. Cause of high temperature heat damage of corn and its countermeasures. Modern Rural Sci Technol, 2019(5): 19-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201905015.htm
    [20]
    Xu J D, Pan X Y, Fan C Y, et al. Impacts and defense measures of high temperature and heat damage on corn in Suiping County in 2016. Bull Agric Sci Technol, 2017(1): 155-157. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTX201701055.htm
    [21]
    Zhang J, Teng Y, Jiang M Y, et al. Major meteorological disasters and preventive measures of maize production in Yanzhou. Agric Knowledge, 2022(7): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZS202207009.htm
    [22]
    Wang W L, Shi S X, Zhang D S, et al. Investigation report on summer corn disaster in Xinxiang City in 2017. Bull Agric Sci Technol, 2019(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTX201901013.htm
    [23]
    Zhang B R. Studies on Effect of High Temperature on Yield and Quality and Regulation in Maize(Zea Mays L. ). Taian: Shandong Agricultural University, 2003.
    [24]
    Niu L, Liu Y, Yu K K, et al. Evaluation of heat-tolerance of maize hybrids at seedling stage. J Maize Sci, 2015, 23(1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201501019.htm
    [25]
    Kobata T, Uemuki N. High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agron J, 2004, 96(2): 406-414. doi:  10.2134/agronj2004.0406
    [26]
    Zhang J W, Dong S T, Wang K J, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize. Chinese J Appl Ecology, 2008, 19(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200801015.htm
    [27]
    Zhao L F, Li C H, Liu T X, et al. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize(Zea Mays L. ). Sci Agric Sinica, 2012, 45(23): 4947-4958. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201223024.htm
    [28]
    Law R D, Crafts-Brandner S J. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiol, 1999, 120(1): 173-181. doi:  10.1104/pp.120.1.173
    [29]
    Yang H. Physiological Mechanism of High Temperature and Drought Stress During Grain Filling on Grain Yield Formation in Waxy Mmaize. Yangzhou: Yangzhou University, 2017.
    [30]
    Xu Z Z, Zhou G S. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass leymus chinensis. Planta, 2006, 224(5): 1080-1090. doi:  10.1007/s00425-006-0281-5
    [31]
    Yan Z H, Liu D Y, Jia X C, et al. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Sci Agric Sinica, 2021, 54(17): 3592-3608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202117004.htm
    [32]
    Zhang S Y. Effects of High Temperature Stress on Reproductive Organ Development and Yield of Summer Maize. Baoding: Hebei Agricultural University, 2019.
    [33]
    Hou X F, Wang Y Y, Huang S B, et al. Effects of high temperature during flowering on pollen development and seed setting rate of maize(Zea Mays L. ). Journal of China Agricultural University, 2020, 25(3): 10-16.
    [34]
    Shao J Y, Li X F, Yu W Z, et al. Combined effects of high temperature and drought on yield and stem microstructure of summer maize. Sci Agric Sinica, 2021, 54(17): 3623-3631. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202117006.htm
    [35]
    Chen Z H, Wang A L, Wang J J, et al. Influence of high temperature on growth and development of maize. Crops, 2008(4): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ200804030.htm
    [36]
    Jiang Z B, Tao H B, Wu T, et al. Effects of high temperature on maize pollen viability. Journal of China Agricultural University, 2016, 21(3): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201603004.htm
    [37]
    Zhao L X, Zhang P, Wang R N, et al. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201410019.htm
    [38]
    Yang H, Shen X, Ding M Q, et al. Effects of high temperature after pollination on grain development and endogenous hormone contents of waxy maize. J Maize Sci, 2017, 25(2): 55-60;67. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201702010.htm
    [39]
    Zheng H J, Dong S T, Wang K J, et al. Studies on effect of ecological factors on maize kernel growth and corresponding regulative measures. J Maize Sci, 2001, 9(1): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX200101026.htm
    [40]
    Li W Y, Wang C J, Fang W, et al. Effects of high temperature at different stages on kernel quality and starch pasting properties of maize. J Maize Sci, 2017, 25(1): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201701014.htm
    [41]
    Zhang B R, Dong S T, Hu C H, et al. Effect of high air temperature during different growth stage on starch synthesis in grain and yield in maize(Zea Mays L. ). Crops, 2007(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200701008.htm
    [42]
    Lu D L, Sun X L, Yan F B, et al. Effects of high temperature during grain filling under control conditions on the physicochemical properties of waxy maize flour. Carbohydr Polym, 2013, 98: 302-310.
    [43]
    Qian T T, Wang Y C, Zheng Z F, et al. A case study of the structure of the Hetao high which caused long-lasting hot weather in Beijing. J Appl Meteor Sci, 2005, 16(2): 167-173. http://qikan.camscma.cn/article/id/20050221
    [44]
    Chen J Q, Shi X H. Possible effects of difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi:  10.11898/1001-7313.20220210
    [45]
    Dong X X, Wu B Y. Dynamic linkages between heat wave events in Jianghuai Region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404
    [46]
    Zhang Y X, Zhang S B. Causation analysis on a large-scale continuous high temperature process occurring in North China Plain. Meteor Mon, 2010, 36(10): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201010004.htm
    [47]
    Li Y H. Characteristics, Causes and Simulation of Summer High Temperature over Beijing. Nanjing: Nanjing University of Information Science & Technology, 2012.
    [48]
    Wang H, Lu X H, Du M F, et al. Spatio-temporal characteristics of extreme heat during summer maize growing season in Haihe Plain from 1960 to 2019. Chinese Agric Sci Bull, 2022, 38(4): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202204009.htm
    [49]
    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [50]
    Jiao M, Li J, Chen P S, et al. Analysis of circulation characteristics and cause of anomalous high temperature and drought in summer of 2018 over Liaoning. Trans Atmos Sci, 2019, 42(4): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201904010.htm
    [51]
    Wang X P, Li Y, Zhang Y, et al. Analysis of circulation characteristics and cause of extremely high temperature and drought in midsummer of 2018 over Dalian Area. J Meteor Environ, 2021, 37(4): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202104010.htm
    [52]
    Zhang S P, Wang Y B, Zhao H Y, et al. Quantitative analysis of temperature conditions and maize growth and yield formation in spring maize region of Northeast China. J Maize Sci, 2022, 30(3): 54-62.
    [53]
    Shang M F, Shi X Y, Zhao J C, et al. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agronomica Sinica, 2023, 49(1): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202301010.htm
    [54]
    Xie M E, Cheng J G, Fan B, et al. Diagnosis of high temperature and drought event in summer 2003 in Yunnan. Meteor Mon, 2005, 31(7): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200507007.htm
    [55]
    Yang Q, Yan L H, Zhou C Z, et al. Characteristic and diagnostic analysis of high temperature and drought in Tongren area in 2009. Plateau Meteor, 2011, 30(4): 1018-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104019.htm
    [56]
    Hu X A. Research and application of high-yield cultivation technology of double-cropping maize spring maize in the high-temperature and arid areas of southeast Sichuan. Southwest China J Agric Sci, 1993, 6(4): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX199304007.htm
    [57]
    Rong R, Chen L, Kang Q, et al. Effects of agricultural meteorological disasters on key development period of spring maize interplanting spring potato in Pengzhou, Sichuan Province. J Agric Catastropho, 2016, 6(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ201601015.htm
    [58]
    Wang H M. Influence of high temperature stress on physiological indexes and yield components of maize in Hetao irrigation district. J Arid Meteor, 2015, 33(1): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201501007.htm
    [59]
    Zhang X P, Li T, Wang B, et al. Study on high temperature stress threshold of maize leaves. Crops, 2021(2): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202102010.htm
    [60]
    Wang L J. Spatiol-temporal Characteristics of Drought, Heat and Its Effect on Yield for Summer Maize in Huang-Huai-Hai Plain, China. Beijing: China Agricultural University, 2018.
    [61]
    He H Y, Hu Q, Pan X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing ate in North China Plain under climate change. Chinese J Agrom, 2020, 41(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202001002.htm
    [62]
    Guan Y, Liu J H, He Q J, et al. Risk probability of heat injury during summer maize flowering period in North China Plain based on information diffusion theory. Chinese J Agrom, 2021, 42(7): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202107007.htm
    [63]
    Xu Y H, Liu T X, Fang W S, et al. Risk analysis of high temperature disaster during summer maize flowering period in Henan Province. Chinese J Agrom, 2021, 42(10): 879-888. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202110008.htm
    [64]
    Chen H L, Li S Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan Province. Chinese J Eco-Agr, 2020, 28(3): 337-348.
    [65]
    Liu Z, Qiao H X, Zhao Z L, et al. Spatial distribution of high temperature stress at corn flowering stage in Huang-Huai-Hai Plain of China. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 272-279. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201507039.htm
    [66]
    Liu P, Yin B Z, Wu Y L, et al. Temporal and spatial distribution characteristics of high temperature in flowering season of summer maize in Hebei Plain in recent 48 years. J Maize Sci, 2022, 30(3): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX202203013.htm
    [67]
    Zhang Q, Tang J, Feng Y C, et al. Determination of extreme high temperature thresholds before and after summer corn jointing stage in Shandong based on accumulated temperature-yield model. Chinese J Agrom, 2017, 38(12): 795-800. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201712007.htm
    [68]
    Wei D, Zeng X H, Luo N, et al. Effects of extreme high temperature on summer maize yield in Beijing-Tianjin-Hebei Region. Journal of China Agricultural University, 2021, 26(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX202101022.htm
    [69]
    Yu Z W. Crop Cultivation Monographs Northern Edition(2nd Edition). Beijing: China Agriculture Press, 2013.
    [70]
    Yin X G, Wang M, Kong J X, et al. Impact of high temperature on maize production and adaptation measures in Northeast China. Chinese J Appl Eco, 2015, 26(1): 186-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201501026.htm
    [71]
    Han J H, Zhang Q, Wang L R, et al. Climatological analysis of extreme heat and drought concurrent events in main growth periods of summer maize in Haihe Plain. Chinese J Agrom, 2021, 42(6): 507-517. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY202106007.htm
    [72]
    Zhou M Z, Wang H J, Huo Z G. The influence of heat stress on maize yield and its association with atmospheric general circulation and sea surface temperature. Climatic Environ Res, 2017, 22(2): 134-148. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201702002.htm
    [73]
    Ministry of Agriculture of the People's Republic of China. The layout planning of advantageous areas of corn(2008-2015). Appl Engineering Techno-Agric Product Processing Industry, 2010(5): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGN201005014.htm
    [74]
    Pan X H. Study on the Heat Wave and Sultry Weather in Summer of Eastern China Area for Past 30 Years. Shanghai: Shanghai Normal University, 2010.
    [75]
    Chu Z, Guo J P. Effects of climatic change on maize varieties distribution in the future of Northeast China. J Appl Meteor Sci, 2018, 29(2): 165-176. doi:  10.11898/1001-7313.20180204
    [76]
    Chen Q, Geng T, Hou W J, et al. Impacts of climate warming on growth and yield of spring maize in recent 20 years in Northeast China. Scientia Agricultura Sinica, 2014, 47(10): 1904-1916. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201410004.htm
    [77]
    Cao Y Q, Feng X X, Li L H, et al. Temporal and spatial variation of spring corn in Liaoning Province under climate change. Acta Ecologica Sinica, 2021, 41(3): 1092-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202103026.htm
    [78]
    Ma J Y. Scenario Analysis of the Effect of High Temperature and Drought on Maize Yield in Northeast China. Beijing: China Academe of Agricultural Sciences, 2012.
    [79]
    Lu K D, Huang W H, Fang L, et al. The climatic zoning of spring maize in Hunan based on meteorological disaster indexes. J Appl Meteor Sci, 2007, 18(4): 548-554. http://qikan.camscma.cn/article/id/20070485
    [80]
    Huang H P, Lai S X, Wen Z D. Climatic diagnosis of spring maize interplanting with summer soybean in karst mountainous area. Guangxi Meteor, 1996, 17(3): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX603.008.htm
    [81]
    Tao Z Q, Chen Y Q, Li C, et al. Path analysis between yield of spring maize and meteorological factors at different sowing times in North China low plain. Acta Agronomica Sinica, 2013, 39(9): 1628-1634. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201309018.htm
    [82]
    Huang Y, Wang J, He D, et al. Temporal-spatial change in adverse meteorological conditions during spring maize growth in Southwest China under climate warming. Resources Sci, 2017, 39(9): 1753-1764. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201709013.htm
    [83]
    Zhao K. Analysis on characteristics of high temperature and drought disaster in Nanchong City and its influence on spring corn production. J Heilongjiang Grain, 2021(10): 104-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HLLK202110046.htm
    [84]
    Guo H L, Tang B, Cao Z Y, et al. Study on growth and temperature stress of spring, summer and autumn maize in Hunan Province. Crop Res, 2020, 34(3): 217-222;226.
    [85]
    Sun X W. lnfluence of agrometeo-rological conditions on the growth of spring corn in Hetao irrigation district in 2016. J Agric Catastropho, 2016, 6(9): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ201609008.htm
    [86]
    Sun X W. lnfluence of agrometeo-rological conditions on the growth of spring corn in Hetao irrigation district in 2017. J Agric Catastropho, 2017, 7(9/10): 23-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ2017Z3012.htm
    [87]
    Liu J. lnfluence of agrometeo-rological conditions on the growth of spring corn in Hetao irrigation district in 2018. Seed Sci & Technol, 2019, 37(5): 150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKJ201905127.htm
    [88]
    Ma F. Causes of corn yield reduction in 2003 and countermeasures of maize production in 2004. Anhui Agric, 2004(5): 27. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE200405030.htm
    [89]
    Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. doi:  10.11898/1001-7313.20200610
    [90]
    Dai L Q, Kang X Y, Yao S R, et al. Monitoring and evaluation indices of high temperature damage for maize in Hebei Province. J Arid Land Resources and Environ, 2022, 36(4): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202204023.htm
    [91]
    Liu C. Study on the rule of high temperature heat damage of summer maize in Zhengzhou by using the temperature three range theory under the background of global climate change. Modern Agric Res, 2018(9): 20-22;28. https://www.cnki.com.cn/Article/CJFDTOTAL-NCXX201809009.htm
    [92]
    Wang X P, Fang W S, Du Z X, et al. Spatiotemporal variation of flowering stage heat damage of summer maize. J Maize Sci, 2021, 29(1): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX202101012.htm
    [93]
    Li D, Sun Y, Sun Y F. Use of integrated climatic index to determine high temperature damage to summer maize at florescence in the Huaibei Plain. Chinese J Eco-Agric, 2015, 23(8): 1035-1044.
    [94]
    Zhu L J, Cai H H, Jiang J H, et al. A brief account about the agrometeorological disaster forewarning system. Bull Sci Technol, 2008, 24(6): 758-761;819. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB200806004.htm
    [95]
    Li S Y, Xue C Y, Liu T X, et al. High Temperature Warning Meteorological Grade of Summer Corn Flowering Period(DB41/T 2094-2021). 2021.
    [96]
    Chen G, Huang S B, Wang P. Heat stress diagnosis of different plant type summer maize by using visible spectral analysis technology. Crops, 2012(3): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201203010.htm
    [97]
    Liu J H, He Q J, Guan Y, et al. Suitable sowing date for stable and high yield of summer maize in the northern region of Huang-Huai-Hai, China. Transactions of the Chinese Society of Agric Engineering, 2022, 38(5): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202205015.htm
    [98]
    Chen Y H, Wang Y L, Zhu D F, et al. Mechanism of exogenous brassinolide in alleviating high temperature injury at panicle initiation stage in rice. Chinese J Rice Sci, 2019, 33(5): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201905011.htm
    [99]
    Zhu N N. Regulating Effects of Irrigation on Maize(Zea Mays L. ) Groeth and Yield Under High Temperature Stress. Zhengzhou: Henan Agricultural University, 2021.
    [100]
    Zhang Z H. Regulatory Effects of Different Amino-acid Foliar Fertilizers on High Temperature Stress at Flowering Stage in Maize. Lanzhou: Gansu Agricultural University, 2018.
  • 加载中
  • -->

Catalog

    Tables(1)

    Article views (2042) PDF downloads(273) Cited by()
    • Received : 2022-07-13
    • Accepted : 2022-11-23
    • Published : 2023-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint