平漂探空数据段 | 匹配次数 | 平均绝对偏差/℃ | 均方根误差/℃ | 相关系数 |
上升段 | 367 | 1.34 | 1.95 | 0.99 |
平漂段 | 249 | 3.92 | 4.10 | 0.04 |
下降段 | 769 | 1.93 | 2.46 | 0.99 |
Citation: | Zhou Xuesong, Guo Qiyun, Xia Yuancai, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. DOI: 10.11898/1001-7313.20230105. |
Fig 1. Ascending section of Nanchang Station at 0730 BT 11 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig 2. Ascending section of Ganzhou Station at 1930 BT 5 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig 3. The horizontal drift section of Changsha Station at 1930 BT 11 June 2021
(a)satellite and original sounding temperature profile, (b)satellite and sparse sounding temperature profile, (c)curve of temperature error changing with time, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig 4. Descending section of Wuhan Station at 1330 BT 25 Jun 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Fig 5. Descending section of Yichang Station at 0130 BT 9 Apr 2021
(a)temperature profiles from satellite and original sounding, (b)temperature profiles from satellite and sparse sounding, (c)temperature error varying with air pressure, (d)error distribution of temperature profile(red curve denotes fitting curve)
Table 1 Inspection and evaluation of satellite data
平漂探空数据段 | 匹配次数 | 平均绝对偏差/℃ | 均方根误差/℃ | 相关系数 |
上升段 | 367 | 1.34 | 1.95 | 0.99 |
平漂段 | 249 | 3.92 | 4.10 | 0.04 |
下降段 | 769 | 1.93 | 2.46 | 0.99 |
Table 2 Inspection and evaluation of satellite data at ascending section
探空站 | 07:30 | 19:30 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | ||
武汉 | 1.32 | 1.74 | 1.18 | 1.58 | |
南昌 | 1.32 | 1.99 | 1.12 | 1.88 | |
宜昌 | 1.22 | 1.60 | 1.30 | 1.66 | |
安庆 | 1.51 | 1.86 | 1.46 | 2.11 | |
赣州 | 1.12 | 1.48 | 1.38 | 2.95 | |
长沙 | 2.15 | 2.95 | 1.06 | 1.34 |
Table 3 Inspection and evaluation of satellite data at horizontal drift section
探空站 | 平均绝对偏差/℃ | 均方根误差/℃ |
武汉 | 3.33 | 3.56 |
南昌 | 3.03 | 3.20 |
宜昌 | 3.24 | 3.41 |
安庆 | 4.42 | 4.60 |
赣州 | 3.56 | 3.72 |
长沙 | 5.97 | 6.09 |
Table 4 Inspection and evaluation of satellite data at descending section
探空站 | 13:30 | 01:30 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | ||
武汉 | 3.67 | 4.43 | 2.16 | 2.73 | |
南昌 | 1.33 | 1.79 | 3.32 | 4.30 | |
宜昌 | 1.67 | 2.06 | 1.04 | 1.38 | |
安庆 | 1.54 | 2.00 | 1.41 | 2.16 | |
赣州 | 1.60 | 2.09 | 1.03 | 1.30 | |
长沙 | 3.26 | 3.79 | 1.13 | 1.51 |
Table 5 Test of satellite data at different altitudes
高度 | 平均绝对偏差/℃ | 均方根误差/℃ |
地面至850 hPa* | 1.68 | 1.93 |
850 hPa至100 hPa** | 1.16 | 1.62 |
100 hPa至10 hPa | 1.75 | 2.21 |
注:*表示含850 hPa, **表示含100 hPa。 |
Table 6 Influence of statistical cloud on satellite inversion temperature
探空数据段 | 云状态 | 探空湿度廓线云判识算法 | FY-3D成像仪云数据 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | |||
上升段 | 有云 | 1.60 | 3.01 | 1.63 | 2.92 | |
无云 | 1.28 | 1.70 | 1.32 | 1.91 | ||
下降段 | 有云 | 2.08 | 2.59 | 1.74 | 2.22 | |
无云 | 1.73 | 2.31 | 1.28 | 1.71 |
[1] |
程凯琪, 郭启云, 马旭林, 等.GNSS掩星观测反演温度质量控制方法研究.电子测量与仪器学报, 2020, 34(7):177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202007023.htm
Cheng K Q, Guo Q Y, Ma X L, et al. Research of quality control method of GNSS occultation observation inversion temperature. J Electr Measur Instr, 2020, 34(7): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202007023.htm
|
[2] |
颜蕊, 王兰炜, 胡哲, 等. 利用地基观测对卫星观测电离层结构参数的定量验证研究. 地震学报, 2017, 39(4): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201704009.htm
Yan R, Wang L W, Hu Z, et al. Quantitative verification on satellite observational data of ionospheric structure parameters using ground-based data. Acta Seismologica Sinica, 2017, 39(4): 549-557. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201704009.htm
|
[3] |
郭启云, 杨荣康, 程凯琪, 等. 基于探空观测的多源掩星折射率质量控制及对比. 应用气象学报, 2020, 31(1): 13-26. DOI: 10.11898/1001-7313.20200102
Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. DOI: 10.11898/1001-7313.20200102
|
[4] |
张旭鹏, 郭启云, 杨荣康, 等. 基于"上升-平漂-下降"探空资料的长江中下游暴雨同化试验. 气象, 2021, 47(12): 1512-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202112007.htm
Zhang X P, Guo Q Y, Yang R K, et al. Assimilation experiment of rainstorm in the middle and lower reaches of the Yangtze River based on "up-drift-down" sounding data. Meteor Mon, 2021, 47(12): 1512-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202112007.htm
|
[5] |
杨国彬, 郭启云, 舒康宁, 等. 基于名单控制方法的探空测风数据质量分析. 气象, 2021, 47(6): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106008.htm
Yang G B, Guo Q Y, Shu K N, et al. Quality analysis of the radiosonde wind observation data based on the list control method. Meteor Mon, 2021, 47(6): 727-736. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106008.htm
|
[6] |
姚雯, 马颖, 高丽娜. L波段与59-701探空系统相对湿度对比分析. 应用气象学报, 2017, 28(2): 218-226. DOI: 10.11898/1001-7313.20170209
Yao W, Ma Y, Gao L N. Comparison of relative humidity data between L-band and 59-701 sounding system. J Appl Meteor Sci, 2017, 28(2): 218-226. DOI: 10.11898/1001-7313.20170209
|
[7] |
雷勇, 郭启云, 钱媛, 等. L波段雷达探空髙度评估及其质量标识. 应用气象学报, 2018, 29(6): 710-723. DOI: 10.11898/1001-7313.20180607
Lei Y, Guo Q Y, Qian Y, et al. Evaluation and quality mark of radiosonde geopotential height of L-band radar. J Appl Meteor Sci, 2018, 29(6): 710-723. DOI: 10.11898/1001-7313.20180607
|
[8] |
郭启云, 杨荣康, 钱媛, 等. 气球携带探空仪上升和降落伞携带探空仪下降的全程探空对比分析. 气象, 2018, 44(8): 1094-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201808011.htm
Guo Q Y, Yang R K, Qian Y, et al. Full-range sounding comparison analysis of balloon borne radiosonde rising and parachute carrying radiosonde descending. Meteor Mon, 2018, 44(8): 1094-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201808011.htm
|
[9] |
朱元竞, 李万彪, 陈勇. GMS-5估计可降水量的研究. 应用气象学报, 1998, 9(1): 8-14. http://qikan.camscma.cn/article/id/19980102
Zhu Y J, Li W B, Chen Y. Study of total precipitable water by GMS-5. J Appl Meteor Sci, 1998, 9(1): 8-14. http://qikan.camscma.cn/article/id/19980102
|
[10] |
杜明斌, 杨引明, 丁金才. COSMIC反演精度和有关特性的检验. 应用气象学报, 2009, 20(5): 586-593. http://qikan.camscma.cn/article/id/20090510
Du M B, Yang Y M, Ding J C. Evaluation for retrieving precision and some merits of COSMIC data. J Appl Meteor Sci, 2009, 20(5): 586-593. http://qikan.camscma.cn/article/id/20090510
|
[11] |
林晓萌, 尉英华, 张楠, 等. 基于地基遥感设备构建遥感探空廓线. 应用气象学报, 2022, 33(5): 568-580. DOI: 10.11898/1001-7313.20220505
Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. DOI: 10.11898/1001-7313.20220505
|
[12] |
韩丰, 杨璐, 周楚炫, 等. 基于探空数据集成学习的短时强降水预报试验. 应用气象学报, 2021, 32(2): 188-199. DOI: 10.11898/1001-7313.20210205
Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. DOI: 10.11898/1001-7313.20210205
|
[13] |
刘娜, 熊安元, 张强, 等对流天气人工智能应用训练基础数据集构建. 应用气象学报, 2021, 32(5): 530-541. DOI: 10.11898/1001-7313.20210502
Liu N, Xiong A Y, Zhang Q, et al. Development of basic dataset of severe convective weather for artificial intelligence training. J Appl Meteor Sci, 2021, 32(5): 530-541. DOI: 10.11898/1001-7313.20210502
|
[14] |
曹晓钟, 郭启云, 杨荣康. 基于长时平漂间隔的上下二次探空研究. 仪器仪表学报, 2019, 40(2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902023.htm
Cao X Z, Guo Q Y, Yang R K. Research of rising and falling twice sounding based on long-time interval of flat-floating. Chinese J Sci Instr, 2019, 40(2): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902023.htm
|
[15] |
杨晨义, 郭启云, 曹晓钟, 等. 基于新型往返式探空观测的下平流层重力波特征分析. 气象学报, 2021, 79(1): 150-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101011.htm
Yang C Y, Guo Q Y, Cao X Z, et al. Analysis of gravity wave characteristics in the lower stratosphere based on new round-trip radiosonde. Acta Meteor Sinica, 2021, 79(1): 150-167. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101011.htm
|
[16] |
王金成, 王丹, 杨荣康, 等. 基于高分辨率数值天气模式的往返平漂式探空轨迹预测方法及初步评估. 大气科学, 2021, 45(3): 651-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202103013.htm
Wang J C, Wang D, Yang R K, et al. A return radiosonde trajectory forecast method and its preliminary evaluation based on high resolution numerical weather prediction model. Chinese J Atmos Sci, 2021, 45(3): 651-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202103013.htm
|
[17] |
王丹, 王金成, 田伟红, 等. 往返式探空观测资料的质量控制及不确定性分析. 大气科学, 2020, 44(4): 865-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004013.htm
Wang D, Wang J C, Tian W H, et al. Quality control and uncertainty analysis of return radiosonde data. Chinese J Atmos Sci, 2020, 44(4): 865-884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004013.htm
|
[18] |
梁智豪, 王东海, 梁钊明. 探空观测的边界层高度时空变化特征. 应用气象学报, 2020, 31(4): 447-459. DOI: 10.11898/1001-7313.20200407
Liang Z H, Wang D H, Liang Z M. Spatio-temporal characteristics of boundary layer height derived from soundings. J Appl Meteor Sci, 2020, 31(4): 447-459. DOI: 10.11898/1001-7313.20200407
|
[19] |
王英, 熊安元. L波段探空仪器换型对高空湿度资料的影响. 应用气象学报, 2015, 26(1): 76-86. DOI: 10.11898/1001-7313.20150108
Wang Y, Xiong A Y. Effects of radiosonde system changing to L-band radar digital radiosonde on humidity measurements in China. J Appl Meteor Sci, 2015, 26(1): 76-86. DOI: 10.11898/1001-7313.20150108
|
[20] |
钱媛, 马旭林, 郭启云, 等. 基于FNL和GRAPES分析场的探空温度数据的误差分析. 气象, 2019, 45(10): 1464-1475. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201910013.htm
Qian Y, Ma X L, Guo Q Y, et al. Error analysis of sounding temperature data based on the FNL and GRAPES analysis fields. Meteor Mon, 2019, 45(10): 1464-1475. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201910013.htm
|
[21] |
郭启云, 钱媛, 杨荣康, 等. L波段探空雷达测风质量控制方法研究. 大气科学学报, 2020, 43(5): 845-855.
Guo Q Y, Qian Y, Yang R K, et al. Study on the quality control method of wind measurement of L-band sounding radar. Trans Atmos Sci, 2020, 43(5): 845-855.
|
[22] |
朱爱军, 胡秀清, 林曼筠, 等. 风云三号D气象卫星全球数据获取方法及数据分发. 海洋气象学报, 2018, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201803001.htm
Zhu A J, Hu X Q, Lin M Y, et al. Global data acquisition methods and data distribution for FY-3D meteorological satellite. J Marine Meteor, 2018, 38(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201803001.htm
|
[23] |
段永强, 王振占, 张升伟. 风云三号(D)气象卫星微波湿温度计系统建模和仿真. 电子与信息学报, 2020, 42(6): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202006030.htm
Duan Y Q, Wang Z Z, Zhang S W. Modeling and simulating of microwave humidity and temperature sounder onboard the FY-3(D) satellite. J Electr Infor Tech, 2020, 42(6): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202006030.htm
|
[24] |
谷松岩, 郭杨, 王振占, 等. 风云三号A星微波湿度计探测通道定标分析. 气象科技进展, 2013, 3(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201304011.htm
Gu S Y, Guo Y, Wang Z Z, et al. Calibration analyses for sounding channels of MWHS onboard FY-3A. Adv Meteor Sci Tech, 2013, 3(4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201304011.htm
|
[25] |
王永韬, 刘良明. HDF5格式特点及其对遥感数据格式标准化的几点启示. 国土资源遥感, 2005(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200503009.htm
Wang Y T, Liu L M. Characteristics of HDF5 format and their reference value to the standardization of remote sensing data. Remote Sensing for Land & Resources, 2005(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200503009.htm
|
[26] |
张茂鑫, 李国春. 基于HDF5文件格式的MERSI影像数据提取的研究与实现. 现代农业科学, 2009, 16(3): 189-191;222. https://www.cnki.com.cn/Article/CJFDTOTAL-NCSY200903079.htm
Zhang M X, Li G C. The Study and implementation of extraction MERSI image data based on the file format of HDF. Modern Agricultural Sciences, 2009, 16(3): 189-191;222. https://www.cnki.com.cn/Article/CJFDTOTAL-NCSY200903079.htm
|
[27] |
黄艺伟, 刘琼, 何敏, 等. 基于探空资料的上海台风季GⅡRS/FY-4A卫星温度廓线反演精度研究. 红外, 2019, 40(9): 28-38.
Huang Y W, Liu Q, He M, et al. Research on inversion precision of temperature profile of GⅡRS/FY-4A satellite in Shanghai typhoon season based on radiosonde data. Infrared, 2019, 40(9): 28-38.
|
[28] |
程凯琪, 郭启云, 杨荣康, 等. GPS掩星气压的评估及质量控制. 大气科学学报, 2021, 44(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202104005.htm
Cheng K Q, Guo Q Y, Yang R K, et al. Assessment and quality control of GPS occultation pressure. Trans Atmos Sci, 2021, 44(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202104005.htm
|
[29] |
钱永甫, 施丹平. 高度场垂直插值方法的数值预报试验. 气象科学, 1990, 10(3): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199003001.htm
Qian Y F, Shi D P. Numerical prediction experiment of vertical interpolation method for height field. J Meteor Sci, 1990, 10(3): 215-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199003001.htm
|
[30] |
Bengtsson L. Problems of Using Satellite Information in Numerieal Weather Predietion//Proc of a Technical Conference. ESA, 1979(SP-143): 87-100.
|
[31] |
任强, 董佩明, 薛纪善. 台风数值预报中受云影响微波卫星资料的同化试验. 应用气象学报, 2009, 20(2): 137-146. http://qikan.camscma.cn/article/id/20090202
Ren Q, Dong P M, Xue J S. The use of microwave satellite data affected by cloud in numerical forecast of typhoon. J Appl Meteor Sci, 2009, 20(2): 137-146. http://qikan.camscma.cn/article/id/20090202
|
[32] |
周毓荃, 欧建军. 利用探空数据分析云垂直结构的方法及其应用研究. 气象, 2010, 36(11): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011011.htm
Zhou Y Q, Ou J J. The method of cloud vertical structure analysis using rawinsonde observation and its applied research. Meteor Mon, 2010, 36(11): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011011.htm
|
[33] |
刘健, 王锡津. 主要卫星云气候数据集评述. 应用气象学报, 2017, 28(6): 654-665. DOI: 10.11898/1001-7313.20170602
Liu J, Wang X J. Assessment on main kinds of satellite cloud climate datasets. J Appl Meteor Sci, 2017, 28(6): 654-665. DOI: 10.11898/1001-7313.20170602
|
1. |
李力,周云祥,李中华,李俊,聂成,黄凡. 卫星平流层探空智能指挥机系统设计与组成. 气象水文海洋仪器. 2025(01): 119-122 .
![]() | |
2. |
鄢珅,时晓曚,傅刚,陈清峰,李昱薇. 测风激光雷达在青岛低能见度天气下的适用性. 应用气象学报. 2024(01): 33-44 .
![]() | |
3. |
马刚,黄静,巩欣亚,希爽,薛蕾,李娟,张鹏,龚建东. 数值预报中气象卫星资料同化前处理技术进展. 应用气象学报. 2024(02): 142-155 .
![]() | |
4. |
王一同,胡秀清,商建,顾玲嘉,尹红刚. 全球典型热带雨林的微波散射特征建模与验证. 应用气象学报. 2024(03): 350-360 .
![]() | |
5. |
周雪松,塞丫,李雅冉,戴玉芝. 基于探空数据的微波辐射计温度廓线检验. 内蒙古气象. 2024(04): 62-67 .
![]() | |
6. |
金子琪,余贞寿,郝世峰,张红蕾,陆正奇,张树宪. 基于探空的FY-4B/GIIRS温湿廓线检验和订正. 应用气象学报. 2024(05): 538-550 .
![]() | |
7. |
周雪松,宏观,夏元彩,罗皓文,包伟智,田泓. 往返式平漂探空下降段FY-3D卫星湿度廓线检验. 气象. 2024(11): 1373-1385 .
![]() | |
8. |
王洪,周后福,王琛,夏一楠. 基于微波辐射计和探空的FY-4A温度廓线检验. 应用气象学报. 2023(03): 295-308 .
![]() | |
9. |
崔鹏,王素娟,陆风,肖萌. FY-4A/AGRI海表温度产品和质量检验. 应用气象学报. 2023(03): 257-269 .
![]() | |
10. |
廖蜜,张鹏,刘健,柳聪亮,白伟华,徐娜,陈林. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报. 2023(03): 270-281 .
![]() |
Table 1 Inspection and evaluation of satellite data
平漂探空数据段 | 匹配次数 | 平均绝对偏差/℃ | 均方根误差/℃ | 相关系数 |
上升段 | 367 | 1.34 | 1.95 | 0.99 |
平漂段 | 249 | 3.92 | 4.10 | 0.04 |
下降段 | 769 | 1.93 | 2.46 | 0.99 |
Table 2 Inspection and evaluation of satellite data at ascending section
探空站 | 07:30 | 19:30 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | ||
武汉 | 1.32 | 1.74 | 1.18 | 1.58 | |
南昌 | 1.32 | 1.99 | 1.12 | 1.88 | |
宜昌 | 1.22 | 1.60 | 1.30 | 1.66 | |
安庆 | 1.51 | 1.86 | 1.46 | 2.11 | |
赣州 | 1.12 | 1.48 | 1.38 | 2.95 | |
长沙 | 2.15 | 2.95 | 1.06 | 1.34 |
Table 3 Inspection and evaluation of satellite data at horizontal drift section
探空站 | 平均绝对偏差/℃ | 均方根误差/℃ |
武汉 | 3.33 | 3.56 |
南昌 | 3.03 | 3.20 |
宜昌 | 3.24 | 3.41 |
安庆 | 4.42 | 4.60 |
赣州 | 3.56 | 3.72 |
长沙 | 5.97 | 6.09 |
Table 4 Inspection and evaluation of satellite data at descending section
探空站 | 13:30 | 01:30 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | ||
武汉 | 3.67 | 4.43 | 2.16 | 2.73 | |
南昌 | 1.33 | 1.79 | 3.32 | 4.30 | |
宜昌 | 1.67 | 2.06 | 1.04 | 1.38 | |
安庆 | 1.54 | 2.00 | 1.41 | 2.16 | |
赣州 | 1.60 | 2.09 | 1.03 | 1.30 | |
长沙 | 3.26 | 3.79 | 1.13 | 1.51 |
Table 5 Test of satellite data at different altitudes
高度 | 平均绝对偏差/℃ | 均方根误差/℃ |
地面至850 hPa* | 1.68 | 1.93 |
850 hPa至100 hPa** | 1.16 | 1.62 |
100 hPa至10 hPa | 1.75 | 2.21 |
注:*表示含850 hPa, **表示含100 hPa。 |
Table 6 Influence of statistical cloud on satellite inversion temperature
探空数据段 | 云状态 | 探空湿度廓线云判识算法 | FY-3D成像仪云数据 | |||
平均绝对偏差/℃ | 均方根误差/℃ | 平均绝对偏差/℃ | 均方根误差/℃ | |||
上升段 | 有云 | 1.60 | 3.01 | 1.63 | 2.92 | |
无云 | 1.28 | 1.70 | 1.32 | 1.91 | ||
下降段 | 有云 | 2.08 | 2.59 | 1.74 | 2.22 | |
无云 | 1.73 | 2.31 | 1.28 | 1.71 |