Sun Yue, Ren Gang, Sun Hongping, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. DOI:  10.11898/1001-7313.20230106.
Citation: Sun Yue, Ren Gang, Sun Hongping, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. DOI:  10.11898/1001-7313.20230106.

Features of Phased-array Dual Polarization Radar Observation During an Anti-aircraft Gun Hail Suppression Operation

DOI: 10.11898/1001-7313.20230106
  • Received Date: 2022-08-08
  • Rev Recd Date: 2022-11-01
  • Publish Date: 2023-01-31
  • Phased-array dual polarization weather radar has the capability on high spatial-temporal resolution detection and microphysical analysis, and it is deemed a new approach of strong convection monitoring and research. If applied in hail suppression operation, it is expected to improve the ability of operation command and effect evaluation. Hence, a case study is carried out on a hail suppression operation by anti-aircraft gun in Xi County, Linfen City, Shanxi Province on 28 June 2021. A phased array dual polarization weather radar is used, which outputs a volume scan data every minute consisting of 21 elevation levels. The radial resolution is 30 m, and the elevation resolution is 1.8°. Based on such high spatial-temporal resolution observations, the phenomenon and mechanisms of the severe convective cell before and after operation are analyzed, including the time series of reflectivity top height and the dynamic and microphysics features in the RHI(range height indicator) profiles. The top height of 55 dBZ reflectivity declines rapidly within 1 min after hail suppression operation, steeping down 2 km to below 0℃ height and maintains. After that, the top height of reflectivity has a short recovery due to the effect of cells merging, but then gradually decreases. 1 min after the operation, the vertical structure of high horizontal reflectivity (ZH) is fractured near 0℃ layer. The parameter of radial velocity divergence (RVD) is proposed to diagnose the vertical airflow structure, showing that the convergence areas in the front and rear of the cell weaken or disappear. The differential reflectivity (ZDR) increases near ground, and the specific phase shift (KDP) increases in the middle and low layers. The ZDR column disappears. There is a column of co-polar correlation coefficient (CC) with the value 0.94-0.96 from the near ground level to 0℃ layer. The small area of the supercooled water in the upper part of the cell core disappears. Below 0℃ layer, the mixed columnar distribution of rain and hail, graupel, wet snow and various rain changes to heavy rain in the low-level. Therefore, these short-term and obvious changes can support the theories of hail suppression by explosion.
  • Fig. 1  Location of X-band phased-array dual polarization radar in Xi County and topography (the shaded)

    (blue circle denotes its detection area, the shaded denotes terrain)

    Fig. 2  Composite reflectivity factor change of X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black V shaped solid lines denote the range of shooting azimuth, black dashed line denotes 162° azimuth of the radar, A-E denote cells, & denotes the merging of cells)

    Fig. 3  Composite reflectivity and ZH at low elevations for Linfen C-band operational weather radar at 1901 BT 28 Jun 2021

    Fig. 4  Time series of reflectivity top height with different ZH thresholds within the moving range of cell A detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (statistical area is the range of radar azimuth between 135° and 180°, black dashed line denotes 0℃ height)

    Fig. 5  ZH in RHI of cell A 1 min before and after the hail suppression detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black dashed line denotes 0℃ height)

    Fig. 6  VR and RVD in RHI of cell A 1 min before and after the hail suppression detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black dashed line denotes 0℃ height)

    Fig. 7  Polarimetric variables and hydrometeor classification in RHI of cell A 1 min before and after the hail suppression detected by X-band phased-array dual polarization radar in Xi County on 28 Jun 2021

    (black dashed line denotes 0℃ height)

    Table  1  Basic performance parameters of X-band phased array dual polarization radar in Xi County

    参数 性能指标
    雷达体制 有源相控阵
    工作体制 双极化一维电子扫描
    工作频率范围 9.3~9.5 GHz
    峰值发射功率 400 W
    天线增益 36 dB
    最快扫描时间 45 s
    距离分辨率 小于30 m
    定量探测距离 大于60 km
    最大波束数 1
    扫描仰角 0°~60°
    天线最大旁瓣 不大于-23 dB
    最小波束宽度 1.8°
    交叉极化隔离度 不小于30 dB
    DownLoad: Download CSV
  • [1]
    Huang M Y, Xu H Y, Zhou L. 40 year's hail suppression in China. Climatic Environ Res, 2000, 5(3): 318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003012.htm
    [2]
    Lei H C, Hong Y C, Zhao Z, et al. Advances in cloud and precipitation physics and weather modification in recent years. Chinese J Atmos Sci, 2008, 32(4): 967-974. doi:  10.3878/j.issn.1006-9895.2008.04.21
    [3]
    Zhou Y J, Zhang Y J, Qie X S, et al. The relationship between the variation of hail cloud system and its cloud to ground lightning in the east part of Gansu Province. Plateau Meteor, 1999, 18(2): 236-244. doi:  10.3321/j.issn:1000-0534.1999.02.013
    [4]
    Yu X D, Zhou X G, Wang X M. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337. doi:  10.3969/j.issn.1004-4965.2012.03.003
    [5]
    Wang F, Li F G. Assessment and improvement of CINRAD/CD hail detection algorithm. Meteor Sci Technol, 2009, 37(3): 345-348. doi:  10.3969/j.issn.1671-6345.2009.03.016
    [6]
    Liu L P, Qian Y F, Wang Z J. The study of special distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi:  10.3321/j.issn:0577-6619.1996.05.008
    [7]
    Liu L P. A theoretical study of estimations of rain and hail rates in mixed-phase areas with dual linear polarization radar. Chinese J Atmos Sci, 2002, 26(6): 761-772. doi:  10.3878/j.issn.1006-9895.2002.06.05
    [8]
    Cao J W, Liu L P, Chen X H, et al. Data quality analysis of 3836 C-band dual-linear polarimetric weather radar and its observation of a rainfall process. J Appl Meteor Sci, 2006, 17(2): 192-200. doi:  10.3969/j.issn.1001-7313.2006.02.009
    [9]
    Zhang J, Tian M, Zhu K Y. Analysis on the products and echo of dual-linear polarization Doppler weather radar. Plateau Mountain Meteor Res, 2010, 30(2): 36-41. doi:  10.3969/j.issn.1674-2184.2010.02.008
    [10]
    Lin W, Zhang S S, Luo C R, et al. Observational analysis of different intensity severe convective clouds by S-band dual-polarization radar. Meteor Mon, 2020, 46(1): 63-72. doi:  10.3969/j.issn.1006-009X.2020.01.015
    [11]
    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403
    [12]
    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20220103
    [13]
    Liu L P, Hu Z Q, Wu C. Development and application of dual linear polarization radar and phased-array radar. Adv Meteor Sci Tech, 2016, 6(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603009.htm
    [14]
    Zrnic D S, Kimpel J F, Forsyth D E, et al. Agile-beam phased array radar for weather observations. Bull Amer Meteor Soc, 2007, 88(11): 1753-1766. doi:  10.1175/BAMS-88-11-1753
    [15]
    Bluestein H B, French M M, Popstefanija I, et al. A mobile, phased-array Doppler radar for the study of severe convective storms. Bull Amer Meteor Soc, 2010, 91(5): 579-600. doi:  10.1175/2009BAMS2914.1
    [16]
    Kim D, Suezawa T, Mega T. Improving precipitation nowcasting using a three-dimensional convolutional neural network model from multi parameter phased array weather radar observations. Atmos Res, 2021, 262: 105774. doi:  10.1016/j.atmosres.2021.105774
    [17]
    Zhang Z Q, Liu L P. Preliminary application of phased array technology in weather radar. Plateau Meteor, 2011, 30(4): 1102-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104028.htm
    [18]
    Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003
    [19]
    Wu C, Liu L. Comparison of the observation capability of an X-band phased-array radar with an X-band Doppler radar and S-band operational radar. Adv Atmos Sci, 2014, 34(4): 814-824.
    [20]
    Liu L P, Wu L L, Wu C, et al. Field experiment on convective precipitation by X-band phased-array radar and preliminary results. Chinese J Atmos Sci, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm
    [21]
    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101
    [22]
    Cheng Y H, Fu P L, Hu D M, et al. The Guangzhou phased-array radar network scheme set-up and observation test. Meteor Mon, 2020, 46(6): 823-836. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006009.htm
    [23]
    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [24]
    Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi:  10.11898/1001-7313.20220206
    [25]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [26]
    Su Y Y, Liu L P. Comparison of mesocyclone identification results between S-band dual polarization radar and X-band phased array weather radar. Meteor Mon, 2022, 48(2): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202202008.htm
    [27]
    Zhou Y Q, Chen B J, Xiao H, et al. A case study of hail suppression by AgI seeding using 3D hailstorm model. Chinese J Atmos Sci, 2003, 27(1): 8-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200301001.htm
    [28]
    Lou X F, Shi Y, Lu G X. Numerical modeling of hailstorms with AgI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. doi:  10.11898/1001-7313.20160201
    [29]
    Lou X F, Fu Y, Sun J. A numeral seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi:  10.11898/1001-7313.20190603
    [30]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [31]
    Liang G, Yue Z G, Li Y, et al. A field experimental exploration of "rain falling after the cannon sounded". Shaanxi Meteor, 2009(6): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQI200906009.htm
    [32]
    Zhou H S, Liu L B, Liu X T, et al. Experimental Study on Precipitation Echo of Convective Cloud Affected by Explosion. 2006 Annual Meeting of China Meteorological Society, 2006.
    [33]
    Xu H B. Practice and Theory-Hail Suppression in China. Beijing: China Meteorological Press, 2021.
    [34]
    Xu H B. The possible dynamic mechanism of explosion in hail suppression. Acta Meteor Sinica, 2001, 59(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200101007.htm
    [35]
    Duan Y, Xu H B. The possible cloud-micro physical mechanism of explosion in hail suppression. Acta Meteor Sinica, 2001, 56(3): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200103007.htm
    [36]
    Xu H B. The Studies of Dynamics in Weather Modification. Beijing: China Meteorological Press, 2014.
    [37]
    Hersbach H, Bell B, Berrisford P, et al. ERA5 Hourly Data on Pressure Levels from 1959 to Present. Copernicus Climate Change Service(C3S) Climate Data Store(CDS), 2018. DOI: 10.24381/cds.bd0915c6.
    [38]
    Ryzhkov A V, Zrnic D S. Radar Polarimetry for Weather Observations. Cham, Switzerland: Springer Nature Switzerland AG, 2019.
    [39]
    Feng L, Xiao H, Wen G, et al. Rain attenuation correction of reflectivity for X-Band dual-polarization radar. Atmosphere, 2016, 7(12): 164.
    [40]
    Xiao L S, Hu D M, Chen S, et al. Study on attention correction algorithm of X-band dual-polarization phased array radar. Meteor Mon, 2021, 47(6): 703-716. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106006.htm
    [41]
    Xu H B, Tian L Q. Physical meaning of "cave channel" in strong convective storm with its application. J Appl Meteor Sci, 2008, 19(3): 372-379. http://qikan.camscma.cn/article/id/20080361
    [42]
    Wang J H, Chen R M, Hu Z Q, et al. Dual Doppler radar observations and analysis of the structure of a severe hailstorm. Acta Meteor Sinica, 2020, 78(5): 796-804.
    [43]
    Feng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurement. Climatic Environ Res, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm
    [44]
    Zhang G, Mahale V N, Putnam B J, et al. Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv Atmos Sci, 2019, 36(6): 571-588.
    [45]
    Yang T X, Yuan Z H. Simulation research on hydrometeor classification by multi-wavelength dual linear polarization Doppler radar. Plateau Meteor, 2017, 36(1): 241-255. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201701023.htm
    [46]
    Feng L, Xiao H, Luo L. Simulation of polarization characteristics and attenuation of dual-polarization rain-measurement radar with T-matrix methods. Chinese J Comput Phys, 2019, 36(2): 189-202. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201902007.htm
    [47]
    Hall M P M, Cherry S M, Goddard J W F, et al. Raindrop sizes and rainfall rate measured by dual-polarization radar. Nature, 1980, 285(5762): 195-198.
    [48]
    Kumjian M R, Ganson S M, Ryzhkov A V. Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J Atmos Sci, 2012, 69(12): 3471-3490.
    [49]
    van Lier-Walqui M, Fridlind A M, Ackerman A S, et al. On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon Wea Rev, 2016, 144(2): 737-758.
    [50]
    Gorgucci E, Chandrasekar V, Bringi V N, et al. Estimation of raindrop size distribution parameters from polarimetric radar measurements. J Atmos Sci, 2002, 59(15): 2373-2384.
    [51]
    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (1277) PDF downloads(179) Cited by()
    • Received : 2022-08-08
    • Accepted : 2022-11-01
    • Published : 2023-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint