Chang Yu, Wen Jianwei, Yang Xuefeng, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. DOI:  10.11898/1001-7313.20230203.
Citation: Chang Yu, Wen Jianwei, Yang Xuefeng, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. DOI:  10.11898/1001-7313.20230203.

Verification of Rainstorm Based on Numerical Model About CMA-TYM and SCMOC in Nenjiang Basin

DOI: 10.11898/1001-7313.20230203
  • Received Date: 2022-11-02
  • Rev Recd Date: 2023-01-10
  • Publish Date: 2023-03-31
  • The Nenjiang is the north source of the Songhua River. Nenjiang Basin is an important commodity grain base in China. The change of water level in Nenjiang Basin during the flood season is closely related to the precipitation, especially the continuous rainstorm and heavy rainstorm are very easy to cause flood disaster. For example, Nenjiang Basin is affected by the continuous rainstorm and heavy rainstorm weather on 18 July 2021, the Yong'an Reservoir bursted, the Xin'an Reservoir collapsed, residents across the towns are hit by the flood disaster. The flood in Nenjiang Basin has great impacts on the national economy and people's lives. Therefore, in order to improve the accuracy of rainstorm prediction in Nenjiang Basin, the deviation between CMA-TYM and SCMOC precipitation products are analyzed from the aspects of rainstorm area and intensity, and the correction ability is improved, which has certain practical significance for agricultural production, reservoir storage, and water resource allocation in the basin. At the same time, it also provides a strong guarantee for forecast warning, people's lives and property security, and sustainable healthy development of social. Nine rainstorm days are selected in 2021, using merged precipitation, based on numerical model products by CMA-TYM and SCMOC, the contiguous rain area (CRA) technique is used to test 24 h precipitation predicted at 2000 BT. The results show that maximum precipitation position deviation of rainstorm days predicted by CMA-TYM and SCMOC are west and north, but precipitation location of rainstorm days tested by CRA technique are west, the former is north, the latter is slightly south. SCMOC prediction preforms better than CMA-TYM. Error analysis show that, it is smaller than the precipitation observation that maximum precipitation value and average precipitation of observed rainstorm area predicted by CMA-TYM and SCMOC, but the grid numbers and area are larger than the observation. On the whole, CMA_TYM forecast is closer to the observation. CRA technique shows that the intensity and pattern of precipitation location predicted by CMA-TYM, location and pattern of precipitation predicted by SCMOC are close to the observation, and it has certain instructive significance.
  • Fig. 1  Observed rainstorm area in Nenjiang Basin on 18 Jul 2021 (the red triangle denotes the location of Yong'an Reservoir and Xinfa Reservoir, the blue line denotes the secondorder and the thirdorder river, hereinafter) (a)rainstorm area of merged precipitation (the shaded), (b)CMA-TYM grid data of no less than 50 mm precipitation verified by CRA (the shaded), (c)SCMOC grid data of no less than 50 mm precipitation verified by CRA (the shaded)

    Fig. 2  Rainstorm area in Nenjiang Basin from 17 Jul to 19 Jul in 2021

    Fig. 3  Position deviation of maximum precipitation and minimum displacement deviation of 9 rainstorm days in Nenjiang Basin in 2021 (a)position deviation of maximum precipitation predicted by CMA-TYM, (b)position deviation of maximum precipitation predicted by SCMOC, (c)minimum displacement deviation predicted by CMA-TYM, (d)minimum displacement deviation predicted by SCMOC

    Fig. 4  Comparision of CMA-TYM and SCMOC forecast to observation of 9 rainstorm days in Nenjiang Basin in 2021

    Fig. 5  Error proportion test of 9 rainstorm days by CRA in Nenjiang Basin in 2021

    Fig. 6  Error of maximum precipitation and minimum displacement deviation of 9 rainstorm days predicted by CMA-TYM and SCMOC in Nenjiang Basin in 2021

    Fig. 7  Errors of 9 rainstorm days in Nenjiang Basin in 2021

    Table  1  Rainstorm days in Nenjiang Basin in 2021

    暴雨日 日期 实况暴雨落区 24 h最大降水量/mm 500 hPa影响系统
    实况 CMA-TYM SCMOC
    06-14 6月14日 内蒙古呼伦贝尔市、兴安盟,黑龙江齐齐哈尔市,吉林省白城市 128.2 59.9 43.5
    06-15 6月15日 内蒙古呼伦贝尔市,黑龙江大兴安岭地区 102.4 108.0 69.4
    07-01 7月1日 内蒙古呼伦贝尔市、兴安盟,吉林省白城市 146.0 138.8 62.8 低涡前部
    07-14 7月14日 内蒙古呼伦贝尔市,黑龙江大兴安岭地区 105.6 94.7 86.6 槽前部
    07-17 7月17日 内蒙古呼伦贝尔市、兴安盟,黑龙江齐齐哈尔市 119.5 38.8 12.8 槽前部
    07-18 7月18日 内蒙古呼伦贝尔市,黑龙江齐齐哈尔市、黑河市 153.4 131.7 68.8 东北冷涡
    07-19 7月19日 内蒙古呼伦贝尔市,黑龙江齐齐哈尔市、黑河市 140.6 113.1 77.6 东北冷涡
    07-26 7月26日 内蒙古兴安盟,黑龙江齐齐哈尔市、大庆市、绥化市、黑河市、伊春市 93.2 127.3 76.2 东北冷涡
    07-31 7月31日 内蒙古呼伦贝尔市 104.8 103.7 116.9 东北冷涡
    DownLoad: Download CSV
  • [1]
    Li Y S, Wang Y. Analysis on climate characteristics and precursor signal of summer precipitation in Nenjiang Basin. Heilongjiang Meteor, 2016, 33(1): 13-17. doi:  10.3969/j.issn.1002-252X.2016.01.004
    [2]
    Li H Y, Yang W, Li F P. The spatiotemporal distribution of precipitation characteristics in Nenjiang River Basin. J Northwest University(Nat Sci Ed), 2020, 50(3): 427-437. doi:  10.16152/j.cnki.xdxbzr.2020-03-013
    [3]
    Bai R H, Sun Y G. The relation of flood and precipitation in Songhuajiang and Nenjiang valley. J Natural Disasters, 2000, 9(2): 49-54. doi:  10.3969/j.issn.1004-4574.2000.02.008
    [4]
    Zhang S D, Liu Z, Lin H M. Reflection on flood control of Qiqihar City in Nenjiang River Basin in 1998. Water Conservancy Sci and Technol and Economy, 2001, 7(2): 83. doi:  10.3969/j.issn.1006-7175.2001.02.022
    [5]
    Yan X G, Huang X Y, Liu T, et al. Rainstorm and flood of Nenjiang River in 2013 and flood control effect of Nierji Reservoir. Water Res & Hydropower of Northeast China, 2015, 33(2): 59-60. doi:  10.3969/j.issn.1002-0624.2015.02.025
    [6]
    Chen L J, Zhang P Q, Zhao Z G. An approach to a prognostic factor of basin rainfall in summer over the Songhuajiang Nenjiang Liaohe Valleys. J Appl Meteor Sci, 2005, 16(5): 663-669. doi:  10.3969/j.issn.1001-7313.2005.05.013
    [7]
    Wang X M, Li H. Spatial verification evaluation of typhoon rainstorm by multiple numerical models. Meteor Mon, 2020, 46(6): 753-764. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202006003.htm
    [8]
    Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi:  10.11898/1001-7313.20230102
    [9]
    Li J, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [10]
    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
    [11]
    Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi:  10.11898/1001-7313.20190307
    [12]
    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [13]
    Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPES_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi:  10.11898/1001-7313.20180301
    [14]
    Wei Q, Dai K, Lin J, et al. Evaluation on the 2016-2018 fine gridded precipitation and temperature forecasting. Meteor Mon, 2020, 46(10): 1272-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202010002.htm
    [15]
    He Y N, Gao S, Xue F, et al. Design and implementation of intelligent gride forecasting platform based on MICAPS4. J Appl Meteor Sci, 2018, 29(1): 13-24. doi:  10.11898/1001-7313.20180102
    [16]
    Zhang Y T, Tong H, Sun J. Application of a bias correction method to meteorological forecast for the Pyeongchang Winter Olympic Games. J Appl Meteor Sci, 2020, 31(1): 27-41. doi:  10.11898/1001-7313.20200103
    [17]
    Wei Q, Li W, Peng S, et al. Development and application of national verification system in CMA. J Appl Meteor Sci, 2019, 30(2): 245-256. doi:  10.11898/1001-7313.20190211
    [18]
    Gilleland E, Ahijevych D A, Brown B G, et al. Verifying forecasts spatially. Bull Amer Meteor Soc, 2010, 91(10): 1365-1373.
    [19]
    Fu J L, Zong Z P, Dai K, et al. Application of a verification method on bias analysis of quantitative precipitation forecasts. Meteor Mon, 2014, 40(7): 796-805. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201407003.htm
    [20]
    Ebert E E, McBride J L. Verification of precipitation in weather systems: Determination of systematic errors. J Hydrol, 2000, 239: 179-202.
    [21]
    Ebert E E, Gallus Jr W A. Toward better understanding of the contiguous rain area(CRA) method for spatial forecast verification. Wea Forecasting, 2009, 24(5): 1401-1415.
    [22]
    Fu J L, Dai K. The ECMWF model precipitation systematic error in the east of southwest China based on the contiguous rain area method for spatial forecast verification. Meteor Mon, 2016, 42(12): 1456-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201612004.htm
    [23]
    Sharma K, Ashrit R, Ebert E, et al. Assessment of Met Office Unified Model(UM) quantitative precipitation forecasts during the Indian summer monsoon: Contiguous rain area (CRA) approach. J Earth Syst Sci, 2019, 128: 4.
    [24]
    Sharma K, Ashrit R, Ebert E, et al. NGFS rainfall forecast verification over India using the contiguous rain area(CRA) method. Mausam: J the Meteor Department of India, 2015, 66(3): 415-422.
    [25]
    Dube A, Ashrit R, Ashish A, et al. Forecasting the heavy rainfall during Himalayan flooding-June 2013. Wea Climate Extremes, 2014, 4: 22-34.
    [26]
    Yu Z F, Chen Y J, Ebert B, et al. Benchmark rainfall verification of landfall tropical cyclone forecasts by operational ACCESS-TC over China. Meteor Appl, 2019, 27(1): 1-18.
    [27]
    Chen Y J, Ebert E E, Davidson N E, et al. Application of contiguous rain area(CRA) methods to tropical cyclone rainfall forecast verification. Earth and Space Sci, 2018, 5: 736-752.
    [28]
    Ebert E, Kusselson S, Turk M. Validation of tropical rainfall potential(TRaP) forecasts for Australian tropical cyclones. Aust Met Mag, 2005, 54(2): 121-135.
    [29]
    Ebert E E, Kusselson S, Turk M, et al. Ensemble tropical rainfall potential(eTRaP) forecasts. Wea Forecasting, 2011, 26(2): 213-224.
    [30]
    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [31]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [32]
    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [33]
    Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi:  10.11898/1001-7313.20220603
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (1378) PDF downloads(84) Cited by()
    • Received : 2022-11-02
    • Accepted : 2023-01-10
    • Published : 2023-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint