[1]
|
|
[2]
|
|
[3]
|
|
[4]
|
Wang Y C, Liu F H, Zhang X L, et al. Interpretation of the nonhydrostatic mesoscale NWP products in terms of local weather phenomena and air pollution in Beijing Area. J Appl Meteor Sci, 2002, 13(3): 312-321. doi: 10.3969/j.issn.1001-7313.2002.03.006
|
[5]
|
Chen M X, Gao F, Kong R, et al. Introduction of auto nowcasting system for convective storm and its performance in Beijing Olympics meteorological service. J Appl Meteor Sci, 2010, 21(4): 395-404. doi: 10.3969/j.issn.1001-7313.2010.04.002
|
[6]
|
Min J J. Evaluation on surface meteorological element forecast by Beijing Rapid Update Cycle System. J Appl Meteor Sci, 2014, 25(3): 265-273. doi: 10.3969/j.issn.1001-7313.2014.03.002
|
[7]
|
Wang Y H, Benedikt B. Precipitation extrapolation nowcasting in Beijing-Tianjin-Hebei under different weather backgrounds. J Appl Meteor Sci, 2022, 33(3): 270-281. doi: 10.11898/1001-7313.20220302
|
[8]
|
|
[9]
|
Li R M, Sun J Z, Zhang Q H, et al. Model predictability of hail precipitation with a moderate hailstorm case. Part Ⅰ: Impact of improved initial conditions by assimilating high-density observations. Mon Wea Rev, 2022, 150(10): 2675-2696. doi: 10.1175/MWR-D-21-0329.1
|
[10]
|
Wilson J W, Feng Y, Chen M, et al. Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea Forecasting, 2010, 25(6): 1691-1714. doi: 10.1175/2010WAF2222417.1
|
[11]
|
|
[12]
|
Williams E R, Boldi B, Matlin A, et al. The behavior of total lightning activity in severe Florida thunderstorms. Atmos Res, 1999, 51: 245-265. doi: 10.1016/S0169-8095(99)00011-3
|
[13]
|
Schultz C J, Petersen W A, Carey L D. Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J Appl Meteor Climatol, 2009, 48: 2543-2563. doi: 10.1175/2009JAMC2237.1
|
[14]
|
Schultz C J, Petersen W A, Carey L D. Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea Forecasting, 2011, 26(5): 744-755. doi: 10.1175/WAF-D-10-05026.1
|
[15]
|
Wang Y, Qie X S, Wang D F, et al. Beijing lightning network(BLNET) and the observation on preliminary breakdown processes. Atmos Res, 2016, 171: 121-132. doi: 10.1016/j.atmosres.2015.12.012
|
[16]
|
Qie X, Yuan S, Chen Z, et al. Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Sci China Earth Sci, 2021, 64: 10-26. doi: 10.1007/s11430-020-9656-8
|
[17]
|
Tian Y, Qie X S, Sun Y, et al. Total lightning signatures of thunderstorms and lightning jumps in hailfall nowcasting in the Beijing Area. Atmos Res, 2019, 230: 104646. doi: 10.1016/j.atmosres.2019.104646
|
[18]
|
Tian Y, Yao W, Yin J L, et al. Comparison of the performance of different lightning jump algorithms in Beijing. J Appl Meteor Sci, 2021, 32(2): 217-232. doi: 10.11898/1001-7313.20210207
|
[19]
|
Tian Y, Yao W, Sun Y, et al. A method for improving the performance of the 2 σ lightning jump algorithm for nowcasting hail. Atmos Res, 2022, 280: 106404. doi: 10.1016/j.atmosres.2022.106404
|
[20]
|
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. doi: 10.11898/1001-7313.20220506
|
[21]
|
Farnell C, Rigo T, Pineda N. Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia. Atmos Res, 2017, 183: 130-141.
|
[22]
|
Zhou K H, Zheng Y G, Lan Y. Flash cell identification, tracking and nowcasting with lightning data. J Appl Meteor Sci, 2016, 27(2): 173-181. doi: 10.11898/1001-7313.20160205
|
[23]
|
|
[24]
|
Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735. doi: 10.11898/1001-7313.20220607
|
[25]
|
Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[26]
|
Ester M, Kriegel H P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining(KDD-96). Portland, Oregon: AAAI Press, 1996: 226-231.
|
[27]
|
|
[28]
|
Edla D R, Jana P K. A prototype-based modified DBSCAN for gene clustering. Procedia Technol, 2012, 6: 485-492.
|
[29]
|
Liang L, Lei Y, Zhang S C, et al. Lightning location algorithm based on DBSCAN and grid search. J Appl Meteor Sci, 2019, 30(3): 267-278. doi: 10.11898/1001-7313.20190302
|
[30]
|
Liang H B, Wang Z. Application of an intelligent early-warning method based on DBSCAN clustering for drilling overflow accident. Cluster Comput, 2019, 22(5): 12599-12608.
|
[31]
|
Ma Z, Jiang R, Qie X, et al. A low frequency 3D lightning mapping network in north China. Atmos Res, 2021, 249: 105314.
|