[1]
|
|
[2]
|
Xue J S, Chen D H. Scientific Design and Application of Numerical Prediction System GRAPES. Beijing: Science Press, 2008.
|
[3]
|
|
[4]
|
Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101
|
[5]
|
Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES_MESO V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103
|
[6]
|
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-Meso and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[7]
|
Chen J, Li X L. The review of 10 years development of the GRAPES global/regional ensemble prediction. Adv Meteor Sci Tech, 2020, 10(2): 9-18. doi: 10.3969/j.issn.2095-1973.2020.02.003
|
[8]
|
Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602
|
[9]
|
|
[10]
|
Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301
|
[11]
|
Chang Y, Wen J W, Yang X F, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. doi: 10.11898/1001-7313.20230203
|
[12]
|
Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[13]
|
Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145: 1882-1896. doi: 10.1002/qj.3533
|
[14]
|
Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102
|
[15]
|
Shen X S, Su Y, Zhang H L, et al. A new version of the CMA-GFS dynamic core based on the predictor-corrector time integration scheme. J Meteor Res, 2023, 37(3): 273-285. doi: 10.1007/s13351-023-3002-0
|
[16]
|
Ma Z S, Liu Q J, Zhao C F, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J Adv Model Earth Sys, 2018, 10(3): 652-667. doi: 10.1002/2017MS001234
|
[17]
|
Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J Meteor Res, 2015, 29(5): 806-822. doi: 10.1007/s13351-015-5043-5
|
[18]
|
Chen J, Ma Z S, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. doi: 10.1002/qj.3787
|
[19]
|
Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502
|
[20]
|
|
[21]
|
Zerroukat M, Wood N, Staniforth A, et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the shallow water equations on the sphere. Quart J Roy Meteor Soc, 2009, 135(642): 1104-1116. doi: 10.1002/qj.458
|
[22]
|
Lauritzen H, Nair D, Paul A, et al. A conservative semi-Lagrangian multi tracer transport scheme(CSLAM) on the cubed-sphere grid. J Comput Phys, 2009, 229(5): 1401-1424.
|
[23]
|
|
[24]
|
|
[25]
|
|
[26]
|
|
[27]
|
|
[28]
|
Morcrette J-J, Barker H W, Cole J N S, et al. Impact of a new radiation package, McRad, in the ECMWF Integrated Forecast System. Mon Wea Rev, 2008, 136(12): 4773-4798.
|
[29]
|
Pincus R, Barker H W, Morcrette J J. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud field. J Geophys Res Atmos, 2003, 108(D13): 4376.
|
[30]
|
Dai Y J, Zeng X B, Dickinson R E, et al. The common land model. Bull Amer Meteor Soc, 2003, 84: 1013-1023.
|
[31]
|
Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339.
|
[32]
|
Arakawa A, Schubert W H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part Ⅰ. J Atmos Sci, 1974, 31(3): 674-701.
|
[33]
|
Grell G A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev, 1993, 121(3): 764-787.
|
[34]
|
Pan H L, Wu W S. Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-range Forecast Model. NMC Office Note 409, 1995: 1-40.
|
[35]
|
Han J L, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea Forecasting, 2011, 26(4): 520-533.
|
[36]
|
Kim Y J, Arakawa A. Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J Atmos Sci, 1995, 52(11): 1875-1902.
|
[37]
|
|
[38]
|
Han J Y, Hong S Y, Kwon Y C. The performance of a revised Simplified Arakawa-Schubert(SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model(KIM). Wea Forecasting, 2020, 35(3): 1113-1128.
|
[39]
|
Han J L, Wang W G, Kwon Y C, et al. Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea Forecasting, 2017, 32(5): 2005-2017.
|
[40]
|
Kemball-Cook S R, Weare B C. The onset of convection in the Madden-Julian oscillation. J Climate, 2001, 14(5): 780-793.
|
[41]
|
Emori S, Nozawa T, Numaguti A, et al. Importance of cumulus parameterization for precipitation simulation over East Asia in June. J Meteor Soc Japan, 2001, 79(4): 939-947.
|
[42]
|
Redelsperger J L, Parsons D B, Guichard F. Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA-COARE. J Atmos Sci, 2002, 59(16): 2438-2457.
|
[43]
|
Bechtold P, Köhler M, Jung T, et al. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart J Roy Meteor Soc, 2008, 134(634): 1337-1351.
|
[44]
|
Bechtold P, Semane N, Lopez P, et al. Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci, 2014, 71(2): 734-753.
|
[45]
|
Su Y, Shen X S, Zhang Q. Application of the correction algorithm to mass conservation in GRAPES_GFS. J Appl Meteor Sci, 2016, 27(6): 666-675. doi: 10.11898/1001-7313.20160603
|
[46]
|
Diamantakis M. The Semi-Lagrangian Technique in Atmospheric Modeling: Current Status and Future Challenges. ECMWF Seminar in Numerical Methods for Atmosphere and Ocean Modeling, 2013.
|
[47]
|
Bénard P. Stability of semi-implicit and iterative centered-implicit time discretizations for various equation systems used in NWP. Mon Wea Rev, 2003, 131(10): 2479-2491.
|
[48]
|
Wood N, Staniforth A, White A, et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart J Roy Meteor Soc, 2014, 140(682): 1505-1520.
|
[49]
|
Stiefel E L. Kernel Polynomials in Linear Algebra and Their Numerical Applications. Four Lectures on Sloving Linear Equations and Determining Eigenvalues, 1958.
|
[50]
|
Gutknecht M H, Rollin S. The Chebyshev iteration revisited. Parallel Computing, 2002, 28(2): 263-283.
|
[51]
|
Bermejo R, Staniforth A. The conversion of the semi-Lagrangian advection schemes to quasi-monotone schemes. Mon Wea Rev, 1992, 120(11): 2622-2632.
|