Zhang Jin, Sun Jian, Shen Xueshun, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. DOI:  10.11898/1001-7313.20230501.
Citation: Zhang Jin, Sun Jian, Shen Xueshun, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. DOI:  10.11898/1001-7313.20230501.

Key Model Technologies of CMA-GFS V4.0 and Application to Operational Forecast

DOI: 10.11898/1001-7313.20230501
  • Received Date: 2023-04-11
  • Rev Recd Date: 2023-07-14
  • Publish Date: 2023-09-30
  • To address problems including underestimation of heavy precipitation, rapid decay of synoptic systems and low computational efficiency in operational forecast of CMA-GFS V3.3, some key technologies related to physics and dynamics of the model are developed and applied.A suite of graupel-related microphysical processes is adopted in the cloud microphysics scheme to improve the forecast performance of heavy precipitation. These processes include graupel colliding with cloud water, ice crystals and snow, automatic conversions of ice crystals to graupel and snow to graupel, melting process of graupel to raindrop and sublimation process of graupel. In addition, the evaporation rate of cloud and rainwater is restricted, which can increase the liquid water content in warm areas and improve precipitation efficiency.In the convection parameterization scheme, the role of the sub-cloud environmental relative humidity to convection triggers is considered, and the unreasonable occurrence of convections in dry environment is suppressed. Also, the sensitivity of the entrainment rate of the convective updraft to the relative humidity outside the cloud is enhanced to weaken the convections in dry environment. At the same time, the quasi-equilibrium closure scheme is optimized to improve the accuracy in calculating cloud-base mass flux which is related to the convection intensity.To solve the problem of the mass loss in long time integration, a mass conservation correction method is introduced to the model dynamic framework. The method is developed to ensure the mass conservation by adjusting mass in each grid box according to different weight coefficients which are determined by the change of total atmospheric mass of the current time step relative to the previous step.In terms of computational efficiency, the two-dimensional reference profile algorithm is developed. Without losing calculation accuracy, the model integration time step is extended from 240 s to 300 s using the new profile instead of the original three-dimensional reference profile. Meanwhile, the PCSI method is adopted instead of the GCR method, which reduces the time consuming of solving Helmholtz equation. In addition, the radiation scheme and predictor-corrector algorithms are also optimized to improve the computational efficiency.Through the application of the above key technologies, the forecasting skills for weather pattern and precipitation of CMA-GFS are significantly improved. And its computational efficiency is increased by about 1/3, which meets operational time requirement for the model with 0.125° horizontal resolution. Based on the improved model and the research achievements in other aspects of the forecast system, CMA-GFS is upgraded to V4.0 with a significantly improved comprehensive performance.
  • Fig. 1  Monthly predictable days of operational global numerical prediction system of CMA, ECMWF and NCEP in the Northern Hemisphere from Jan 2013 to Sep 2022

    Fig. 2  Vertical profiles of hydrometeor mass contents over the tropics (20°S-20°N) before and after cloud microphysics improvement of CMA-GFS from 0000 UTC 11 Jul to 0000 UTC 12 Jul in 2021

    Fig. 3  Accumulated precipitation of observed and forecasted before and after cloud microphysics improvement of CMA-GFS from 0000 UTC 11 Jul to 0000 UTC 12 Jul in 2021

    Fig. 4  Accumulated precipitation of observed and forecasted before and after convective parameterization scheme improvement of CMA-GFS from 0000 UTC 26 Jul to 0000 UTC 27 Jul in 2022 (+ denotes station with precipitation rate exceeding 20 mm·h-1)

    Fig. 5  500 hPa geopotential height mean in Jul 2022 (unit:dagpm)

    Fig. 6  Anomaly correlation coefficient and root mean square error of global 500 hPa geopotnetial height forecasted by improved experiment with differences to control experiment in Aug 2022

    (the area outside the rectangle passing the test of 0.05 level)

    Fig. 7  Scores for 24 h accumulated precipitation forecasted by CMA-GFS V3.3 and V4.0 from 1 Sep 2021 to 31 Aug 2022

    Table  1  Change of total mass relative to the initial field during 30-day integration for CMA-GFS V3.3

    预报日数/d 控制试验 质量守恒修正试验
    0 1 1
    3 0.999622 0.999999
    6 0.999387 0.999999
    9 0.999316 0.999999
    12 0.999026 0.999999
    15 0.998792 0.999999
    18 0.998868 0.999999
    21 0.998428 0.999999
    24 0.997662 0.999999
    27 0.997217 0.999999
    30 0.996886 0.999999
    DownLoad: Download CSV

    Table  2  Improvement of the key technologies of CMA-GFS V4.0

    关键技术与方案 具体改进内容
    云微物理方案 增加霰粒子的微物理转化过程,液滴蒸发由1个时步内完成调整为2个时步内完成
    对流参数化方案 引入次云层环境相对湿度对陆地格点对流触发函数的影响,增强云内侧向卷入率对环境相对湿度的敏感性,优化准平衡假设闭合计算
    质量守恒性处理 引入质量守恒修正算法
    参考廓线算法 参考廓线由三维调整为二维
    Helmholtz方程求解器 求解器由GCR升级为PCSI
    其他优化 辐射方案采用跳点计算,动力预估过程采用QMSL标量平流方法,应用平流和插值等采用向量化方法,优化冗余操作、资料交换、读写效率
    DownLoad: Download CSV
  • [1]
    Chen D H, Shen X S. Recent progress on GRAPES research and application. J Appl Meteor Sci, 2006, 17(6): 773-777. doi:  10.3969/j.issn.1001-7313.2006.06.014
    [2]
    Xue J S, Chen D H. Scientific Design and Application of Numerical Prediction System GRAPES. Beijing: Science Press, 2008.
    [3]
    Shen X S, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003008.htm
    [4]
    Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi:  10.11898/1001-7313.20170101
    [5]
    Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES_MESO V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi:  10.11898/1001-7313.20170103
    [6]
    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-Meso and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [7]
    Chen J, Li X L. The review of 10 years development of the GRAPES global/regional ensemble prediction. Adv Meteor Sci Tech, 2020, 10(2): 9-18. doi:  10.3969/j.issn.2095-1973.2020.02.003
    [8]
    Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi:  10.11898/1001-7313.20220602
    [9]
    Zhang J, Ma S H, Chen D H, et al. The improvements of GRAPES_TYM and its performance in the Northwest Pacific Ocean and the South China Sea in 2013. J Trop Meteor, 2017, 33(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201701007.htm
    [10]
    Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi:  10.11898/1001-7313.20180301
    [11]
    Chang Y, Wen J W, Yang X F, et al. Verification of rainstorm based on numerical model about CMA-TYM and SCMOC in Nenjiang Basin. J Appl Meteor Sci, 2023, 34(2): 154-165. doi:  10.11898/1001-7313.20230203
    [12]
    Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi:  10.11898/1001-7313.20210101
    [13]
    Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart J Roy Meteor Soc, 2019, 145: 1882-1896. doi:  10.1002/qj.3533
    [14]
    Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi:  10.11898/1001-7313.20230102
    [15]
    Shen X S, Su Y, Zhang H L, et al. A new version of the CMA-GFS dynamic core based on the predictor-corrector time integration scheme. J Meteor Res, 2023, 37(3): 273-285. doi:  10.1007/s13351-023-3002-0
    [16]
    Ma Z S, Liu Q J, Zhao C F, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J Adv Model Earth Sys, 2018, 10(3): 652-667. doi:  10.1002/2017MS001234
    [17]
    Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J Meteor Res, 2015, 29(5): 806-822. doi:  10.1007/s13351-015-5043-5
    [18]
    Chen J, Ma Z S, Li Z, et al. Vertical diffusion and cloud scheme coupling to the Charney-Phillips vertical grid in GRAPES global forecast system. Quart J Roy Meteor Soc, 2020, 146(730): 2191-2204. doi:  10.1002/qj.3787
    [19]
    Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi:  10.11898/1001-7313.20220502
    [20]
    Staniforth A, Cote J. Semi-Lagrangian integration schemes for atmospheric models-A review. Mon Wea Rev, 1991, 119: 2206-2223. doi:  10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
    [21]
    Zerroukat M, Wood N, Staniforth A, et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the shallow water equations on the sphere. Quart J Roy Meteor Soc, 2009, 135(642): 1104-1116. doi:  10.1002/qj.458
    [22]
    Lauritzen H, Nair D, Paul A, et al. A conservative semi-Lagrangian multi tracer transport scheme(CSLAM) on the cubed-sphere grid. J Comput Phys, 2009, 229(5): 1401-1424.
    [23]
    Su Y, Shen X S, Chen Z T, et al. A study on the three dimensional reference atmosphere in GRAPES_GFS: Theoretical design and ideal test. Acta Meteor Sinica, 2018, 76(2): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201802006.htm
    [24]
    Su Y, Shen X S, Zhang H L, et al. A study on the three dimensional reference atmosphere in GRAPES_GFS: Constructive reference state and real forecast experiment. Acta Meteor Sinica, 2020, 78(6): 962-971. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006006.htm
    [25]
    Zhang L L, Song J Q, Zhao W T, et al. Solving Helmholtz equations of the GRAPES global nonhydrostatic model based on the PETSc. Acta Meteor Sinica, 2011, 69(3): 432-439. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201103004.htm
    [26]
    Su Y, Shen X H, Peng X D, et al. Application of PRM scalar advection scheme in GRAPES global forecast system. Chinese J Atmos Sci, 2013, 37(6): 1309-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201306013.htm
    [27]
    Zhang H L, Shen X S, Su Y. A semi-implicit semi-Lagrangian time integration schemes with a predictor and a corrector and their applications in CMA-GFS. Acta Meteor Sinica, 2022, 80(2): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202202008.htm
    [28]
    Morcrette J-J, Barker H W, Cole J N S, et al. Impact of a new radiation package, McRad, in the ECMWF Integrated Forecast System. Mon Wea Rev, 2008, 136(12): 4773-4798.
    [29]
    Pincus R, Barker H W, Morcrette J J. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud field. J Geophys Res Atmos, 2003, 108(D13): 4376.
    [30]
    Dai Y J, Zeng X B, Dickinson R E, et al. The common land model. Bull Amer Meteor Soc, 2003, 84: 1013-1023.
    [31]
    Hong S Y, Pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev, 1996, 124(10): 2322-2339.
    [32]
    Arakawa A, Schubert W H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part Ⅰ. J Atmos Sci, 1974, 31(3): 674-701.
    [33]
    Grell G A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev, 1993, 121(3): 764-787.
    [34]
    Pan H L, Wu W S. Implementing a Mass Flux Convective Parameterization Package for the NMC Medium-range Forecast Model. NMC Office Note 409, 1995: 1-40.
    [35]
    Han J L, Pan H L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea Forecasting, 2011, 26(4): 520-533.
    [36]
    Kim Y J, Arakawa A. Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J Atmos Sci, 1995, 52(11): 1875-1902.
    [37]
    Chen X J, Liu Q J, Ma Z S. A diagnostic study of cloud scheme for the GRAPES global forecast model. Acta Meteor Sinica, 2021, 79(1): 65-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101005.htm
    [38]
    Han J Y, Hong S Y, Kwon Y C. The performance of a revised Simplified Arakawa-Schubert(SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model(KIM). Wea Forecasting, 2020, 35(3): 1113-1128.
    [39]
    Han J L, Wang W G, Kwon Y C, et al. Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea Forecasting, 2017, 32(5): 2005-2017.
    [40]
    Kemball-Cook S R, Weare B C. The onset of convection in the Madden-Julian oscillation. J Climate, 2001, 14(5): 780-793.
    [41]
    Emori S, Nozawa T, Numaguti A, et al. Importance of cumulus parameterization for precipitation simulation over East Asia in June. J Meteor Soc Japan, 2001, 79(4): 939-947.
    [42]
    Redelsperger J L, Parsons D B, Guichard F. Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA-COARE. J Atmos Sci, 2002, 59(16): 2438-2457.
    [43]
    Bechtold P, Köhler M, Jung T, et al. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart J Roy Meteor Soc, 2008, 134(634): 1337-1351.
    [44]
    Bechtold P, Semane N, Lopez P, et al. Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci, 2014, 71(2): 734-753.
    [45]
    Su Y, Shen X S, Zhang Q. Application of the correction algorithm to mass conservation in GRAPES_GFS. J Appl Meteor Sci, 2016, 27(6): 666-675. doi:  10.11898/1001-7313.20160603
    [46]
    Diamantakis M. The Semi-Lagrangian Technique in Atmospheric Modeling: Current Status and Future Challenges. ECMWF Seminar in Numerical Methods for Atmosphere and Ocean Modeling, 2013.
    [47]
    Bénard P. Stability of semi-implicit and iterative centered-implicit time discretizations for various equation systems used in NWP. Mon Wea Rev, 2003, 131(10): 2479-2491.
    [48]
    Wood N, Staniforth A, White A, et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart J Roy Meteor Soc, 2014, 140(682): 1505-1520.
    [49]
    Stiefel E L. Kernel Polynomials in Linear Algebra and Their Numerical Applications. Four Lectures on Sloving Linear Equations and Determining Eigenvalues, 1958.
    [50]
    Gutknecht M H, Rollin S. The Chebyshev iteration revisited. Parallel Computing, 2002, 28(2): 263-283.
    [51]
    Bermejo R, Staniforth A. The conversion of the semi-Lagrangian advection schemes to quasi-monotone schemes. Mon Wea Rev, 1992, 120(11): 2622-2632.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (903) PDF downloads(196) Cited by()
    • Received : 2023-04-11
    • Accepted : 2023-07-14
    • Published : 2023-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint