模型方案 | 交通气象站观测数据 | 物理机制相关变量 | 特征变量 |
方案1 | √ | ||
方案2 | √ | ||
方案3 | √ | √ | |
方案4 | √ | √ | |
方案5 | √ | √ | √ |
Citation: | Xiong Guoyu, Zu Fan, Bao Yunxuan, et al. Expressway pavement temperature forecast based on LSTM and prior knowledge. J Appl Meteor Sci, 2024, 35(1): 68-79. DOI: 10.11898/1001-7313.20240106. |
Fig. 4 The same as in Fig. 3, but for 3 h lead time
Table 1 Model scheme setting
模型方案 | 交通气象站观测数据 | 物理机制相关变量 | 特征变量 |
方案1 | √ | ||
方案2 | √ | ||
方案3 | √ | √ | |
方案4 | √ | √ | |
方案5 | √ | √ | √ |
Table 2 Accuracy rate and threat score of Scheme 5 under low and high pavement temperature conditions
路面状况 | 交通气象站 | 1 h时效 | 2 h时效 | 3 h时效 | |||||
准确率/% | TS评分 | 准确率/% | TS评分 | 准确率/% | TS评分 | ||||
低温 | M9518 | 100 | 0.64 | 99.77 | 0.63 | 99.77 | 0.60 | ||
M9520 | 100 | 0.56 | 100 | 0.52 | 100 | 0.53 | |||
M9522 | 100 | 0.53 | 98.41 | 0.49 | 94.42 | 0.42 | |||
M9526 | 99.40 | 0.71 | 100 | 0.74 | 99.28 | 0.69 | |||
高温 | M9518 | 27.82 | 0.41 | 11.55 | 0.17 | 6.45 | 0.07 | ||
M9520 | 58.10 | 0.56 | 25.05 | 0.28 | 13.75 | 0.16 | |||
M9522 | 67.67 | 0.52 | 45.65 | 0.39 | 22.02 | 0.21 | |||
M9526 | 51.27 | 0.62 | 43.79 | 0.51 | 28.74 | 0.41 |
Table 3 Evaluation of Scheme 5 in extreme high and extreme low pavement temperature cases
个例 | 交通气象站 | 1 h时效 | 3 h时效 | |||||
准确率/% | 平均绝对偏差/℃ | 均方根误差/℃ | 准确率/% | 平均绝对偏差/℃ | 均方根误差/℃ | |||
极端低温 | M9518 | 100 | 0.80 | 0.88 | 97.91 | 0.96 | 1.24 | |
M9520 | 100 | 0.53 | 0.71 | 100 | 0.94 | 1.18 | ||
M9522 | 100 | 0.69 | 0.84 | 93.75 | 1.42 | 1.75 | ||
M9526 | 97.92 | 0.77 | 1.08 | 92.36 | 1.11 | 1.50 | ||
极端高温 | M9518 | 69.44 | 2.27 | 2.95 | 53.47 | 4.19 | 5.64 | |
M9520 | 88.89 | 0.92 | 1.40 | 68.06 | 2.68 | 3.27 | ||
M9522 | 90.27 | 1.01 | 1.50 | 67.36 | 2.97 | 3.72 | ||
M9526 | 79.86 | 1.63 | 2.84 | 61.80 | 3.88 | 5.94 |
Table 4 Evaluation of model transfer application forecasting performance
模型站 | 模型站类型 | 验证站 | 验证站类型 | 1 h时效 | 3 h时效 | |||||
准确率/% | 平均绝对偏差/℃ | 均方根误差/℃ | 准确率/% | 平均绝对偏差/℃ | 均方根误差/℃ | |||||
M9521 | 城市 | 86.09 | 1.47 | 2.30 | 73.10 | 2.40 | 3.53 | |||
M9126 | 城市 | 87.17 | 1.47 | 2.31 | 72.12 | 2.54 | 3.67 | |||
M9518 | 城郊 | M9293 | 城郊 | 80.18 | 1.86 | 2.92 | 67.95 | 2.88 | 4.23 | |
M9513 | 乡村 | 78.87 | 1.99 | 2.97 | 59.44 | 3.86 | 5.65 | |||
M9516 | 乡村 | 80.39 | 1.93 | 2.93 | 59.95 | 3.80 | 5.62 | |||
M9521 | 城市 | 88.20 | 1.43 | 2.05 | 70.22 | 2.60 | 3.75 | |||
M9126 | 城市 | 87.35 | 1.49 | 2.18 | 68.28 | 2.83 | 4.06 | |||
M9520 | 城郊 | M9293 | 城郊 | 84.11 | 1.65 | 2.41 | 66.88 | 2.92 | 4.24 | |
M9513 | 乡村 | 83.78 | 1.65 | 2.71 | 62.80 | 3.37 | 5.01 | |||
M9516 | 乡村 | 85.32 | 1.65 | 2.87 | 62.82 | 3.39 | 5.12 | |||
M9521 | 城市 | 86.10 | 1.58 | 2.22 | 70.23 | 2.77 | 4.08 | |||
M9126 | 城市 | 85.29 | 1.72 | 2.35 | 66.55 | 3.06 | 4.34 | |||
M9522 | 城市 | M9293 | 城郊 | 80.97 | 1.90 | 2.73 | 65.96 | 3.24 | 4.86 | |
M9513 | 乡村 | 81.92 | 1.81 | 2.82 | 57.21 | 4.01 | 6.03 | |||
M9516 | 乡村 | 81.35 | 1.85 | 2.80 | 55.69 | 4.06 | 6.02 | |||
M9521 | 城市 | 86.39 | 1.52 | 2.17 | 58.39 | 3.36 | 4.61 | |||
M9126 | 城市 | 85.09 | 1.63 | 2.31 | 57.56 | 3.62 | 5.15 | |||
M9526 | 乡村 | M9293 | 城郊 | 81.69 | 1.79 | 2.68 | 64.73 | 3.12 | 4.51 | |
M9513 | 乡村 | 84.17 | 1.70 | 2.44 | 63.65 | 3.20 | 4.55 | |||
M9516 | 乡村 | 84.18 | 1.75 | 2.48 | 62.16 | 3.12 | 4.38 |
[1] |
Feng L, Wang X F, He X F, et al. Fine forecast of high road temperature along jiangsu highways based on INCA system and METRo model. J Appl Meteor Sci, 2017, 28(1): 109-118. doi: 10.11898/1001-7313.20170110
|
[2] |
Chen J Q, Wang H, Xie P Y. Pavement temperature prediction: Theoretical models and critical affecting factors. Appl Therm Eng, 2019, 158: 113755. doi: 10.1016/j.applthermaleng.2019.113755
|
[3] |
Chen S K, Saeed T U, Labi S. Impact of road-surface condition on rural highway safety: A multivariate random parameters negative binomial approach. Anal Meth Accid Res, 2017, 16: 75-89.
|
[4] |
Adwan I, Milad A, Memon Z A, et al. Asphalt pavement temperature prediction models: A review. Appl Sci, 2021, 11(9): 3794. doi: 10.3390/app11093794
|
[5] |
Barber E S. Calculation of maximum pavement temperatures from weather reports. Highw Res Board Bull, 1957, 168: 1-8.
|
[6] |
Liu X M, Yu Y C, Lei G L, et al. Using radiant balance theory to calculate concrete road-surface temperature in summer. J Appl Meteor Sci, 2004, 15(5): 623-628. doi: 10.3969/j.issn.1001-7313.2004.05.012
|
[7] |
Zhu C Y, Xie Z Q, Yan M L, et al. Study on the numerical prediction model of extreme temperature on speedway-surface. Sci Meteor Sinica, 2009, 29(5): 645-650.
|
[8] |
Dempsey B J, Thompson M R. A heat transfer model for evaluating frost action and temperature-related effects in multilayered pavement systems. Highw Res Rec, 1970(342): 39-56.
|
[9] |
Meng C L, Zhang C L. Development and verification of a numerical forecast model for road meteorological services. J Appl Meteor Sci, 2012, 23(4): 451-458. doi: 10.3969/j.issn.1001-7313.2012.04.008
|
[10] |
Asefzadeh A, Hashemian L, Bayat A. Development of statistical temperature prediction models for a test road in Edmonton, Alberta, Canada. Int J Pavement Res Technol, 2017, 10(5): 369-382. doi: 10.1016/j.ijprt.2017.05.004
|
[11] |
Dong T X, Bao Y X, Yuan C S, et al. Application of three statistical forecast models in early warning of low-temperature on road surface in Jiangsu and their comparison. Meteor Sci Technol, 2018, 46(4): 773-784.
|
[12] |
Chandrappa A K, Biligiri K P. Development of pavement-surface temperature predictive models: Parametric approach. J Mater Civ Eng, 2016, 28(3): 04015143.1-04015143.12.
|
[13] |
Wang K, Hao P W. Prediction model of temperature in different layers of asphalt pavement. J Chang'an Univ(Nat Sci Ed), 2017, 37(6): 24-30. doi: 10.3969/j.issn.1671-8879.2017.06.004
|
[14] |
Tang J J, Guo Z Y. Pavement temperature short-impending prediction based on ARIMA in winter. J Tongji Univ(Nat Sci Ed), 2017, 45(12): 1824-1829.
|
[15] |
Chapman L, Thornes J E. A geomatics-based road surface temperature prediction model. Sci Total Environ, 2006, 360(1/2/3): 68-80.
|
[16] |
Thornes J E, Cavan G, Chapman L. XRWIS: The use of geomatics to predict winter road surface temperatures in Poland. Meteor Appl, 2005, 12(1): 83-90. doi: 10.1017/S135048270500157X
|
[17] |
Shao J. Improving nowcasts of road surface temperature by a backpropagation neural network. Wea Forecasting, 1998, 13(1): 164-171. doi: 10.1175/1520-0434(1998)013<0164:INORST>2.0.CO;2
|
[18] |
Abo-Hashema M A. Modeling Pavement Temperature Prediction Using Artificial Neural Networks Airfield and Highway Pavement 2013. Los Angeles, California, USA. Reston, VA: American Society of Civil Engineers, 2013: 490-505.
|
[19] |
Xu B, Dan H C, Li L. Temperature prediction model of asphalt pavement in cold regions based on an improved BP neural network. Appl Therm Eng, 2017, 120: 568-580. doi: 10.1016/j.applthermaleng.2017.04.024
|
[20] |
Lei J J, Wei H H, Li J. A genetic PSO-SVM hybrid algorithm for road icing forecast. J Huazhong Norm Univ(Nat Sci Ed), 2010, 44(3): 392-396.
|
[21] |
Wang K X, Bao Y X, Zhu C Y, et al. Forecasts of road surface temperature in winter based on random forests regression. Meteor Mon, 2021, 47(1): 82-93.
|
[22] |
Liu B, Shen L B, You H L, et al. Comparison of algorithms for road surface temperature prediction. Int J Crowd Sci, 2018, 2(3): 212-224. doi: 10.1108/IJCS-09-2018-0021
|
[23] |
Karpatne A, Atluri G, Faghmous J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng, 2017, 29(10): 2318-2331. doi: 10.1109/TKDE.2017.2720168
|
[24] |
Tian H, Wu H, Zhao L N, et al. Characteristics and statistical model of road surface temperature on huning expressway. J Appl Meteor Sci, 2009, 20(6): 737-744. doi: 10.3969/j.issn.1001-7313.2009.06.012
|
[25] |
Wu S, Wu D, Deng X J, et al. Characteristics of road surface temperature on freeway over Nanling hilly region. Meteor Sci Technol, 2006, 34(6): 783-787. doi: 10.3969/j.issn.1671-6345.2006.06.028
|
[26] |
Jun C, Ban Y F, Li S N. Open access to earth land-cover map. Nature, 2014, 514(7523): 434.
|
[27] |
Zhang K E, Cao C, Chu H R, et al. Increased heat risk in wet climate induced by urban humid heat. Nature, 2023, 617(7962): 738-742. doi: 10.1038/s41586-023-05911-1
|
[28] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. doi: 10.1002/qj.3803
|
[29] |
Muoz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data, 2021, 13(9): 4349-4383.
|
[30] |
Zhang X, Hao Y, Liang J, et al. Characteristics of road surface temperature of Shaanxi expressway and its prediction model. J Arid Meteor, 2019, 37(6): 1028-1034.
|
[31] |
Li H. Study of Statistical Methods Based on Machine Learning Algorithms for Air Quality Forecasting in Lanzhou. Lanzhou: Lanzhou University, 2017.
|
[32] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
[33] |
Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109
|
[34] |
Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304
|
[35] |
Kong W, Che Q, Zhao H R, et al. Short-term prediction of coal stock in power plant based on singular spectrum analysis and long short-term memory neural network. Inf Control, 2020, 49(6): 742-751.
|
[36] |
Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. doi: 10.11898/1001-7313.20230404
|
[37] |
Liu B, Yan S, You H, et al. An Ensembled RBF Extreme Learning Machine to Forecast Road Surface Temperature//2017 16th IEEE International Conference on Machine Learning and Applications(ICMLA), 2017: 977-980.
|
[38] |
Wang Y H, Bica B. Precipitation extrapolation nowcasting in Being-Tianjin-Hebei under different weather backgrounds. J Appl Meteor Sci, 2022, 33(3): 270-281. doi: 10.11898/1001-7313.20220302
|
[39] |
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi: 10.11898/1001-7313.20220301
|
[40] |
China Meteorological Administration. Grade of Weather Conditions for Freeway Transportation: QX/T 111-2010. Beijing: China Meteorological Press, 2010.
|
[41] |
China Meteorological Administration. The Warning Levels of High-impact Weather on Highway Traffic: QX/T 414-2018. Beijing: China Meteorological Press, 2018.
|