降水等级 | 雨强/(mm·h-1) | 样本量 | 样本比例/% |
弱降水 | [0.1, 5) | 25207 | 95.98 |
一般降水 | [5, 10) | 780 | 2.97 |
中等降水 | [10, 25) | 269 | 1.02 |
强降水 | [25, +∞) | 7 | 0.03 |
Citation: | Li Dan, Lin Wen, Liu Qun, et al. Application of machine learning to statistical evaluation of artificial rainfall enhancement. J Appl Meteor Sci, 2024, 35(1): 118-128. DOI: 10.11898/1001-7313.20240110. |
Table 1 Sample size of different rainfall categories in 2014-2023
降水等级 | 雨强/(mm·h-1) | 样本量 | 样本比例/% |
弱降水 | [0.1, 5) | 25207 | 95.98 |
一般降水 | [5, 10) | 780 | 2.97 |
中等降水 | [10, 25) | 269 | 1.02 |
强降水 | [25, +∞) | 7 | 0.03 |
[1] |
毛节泰, 郑国光.对人工影响天气若干问题的探讨.应用气象学报, 2006, 17(5):643-646. DOI: 10.3969/j.issn.1001-7313.2006.05.015
Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. DOI: 10.3969/j.issn.1001-7313.2006.05.015
|
[2] |
郭学良, 方春刚, 卢广献, 等. 2008—2018年我国人工影响天气技术及应用进展. 应用气象学报, 2019, 30(6): 641-650. DOI: 10.11898/1001-7313.20190601
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. DOI: 10.11898/1001-7313.20190601
|
[3] |
姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. DOI: 10.3969/j.issn.1001-7313.2006.06.016
Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. DOI: 10.3969/j.issn.1001-7313.2006.06.016
|
[4] |
叶家东, 范蓓芬. 人工影响天气的统计数学方法. 北京: 科学出版社, 1982.
Ye J D, Fan B F. Statistical and Mathematical Methods of Weather Modification. Beijing: Science Press, 1982.
|
[5] |
叶家东, 范蓓芬, 杜京朝. 人工增雨试验中的反效果问题. 应用气象学报, 1998, 9(3): 336-344. http://qikan.camscma.cn/article/id/19980348
Ye J D, Fan B F, Du J C. Study of negative effects in artificial precipitation enhancement experiments. J Appl Meteor Sci, 1998, 9(3): 336-344. http://qikan.camscma.cn/article/id/19980348
|
[6] |
曾光平, 方仕珍. 福建省古田水库人工降雨试验效果的多元回归分析. 热带气象, 1986, 2(4): 336-342.
Zeng G P, Fang S Z. The result multivariate analysis of artificial rainfall in Fujian Gutian Area during 1975-1984. J Trop Meteor, 1986, 2(4): 336-342.
|
[7] |
曾光平, 方仕珍, 肖锋. 1975—1986年古田水库人工降雨效果总分析. 大气科学, 1991, 15(4): 97-108. DOI: 10.3878/j.issn.1006-9895.1991.04.11
Zeng G P, Fang S Z, Xiao F. The total analysis of the effect of artificial rainfall in Gutian Reservoir Area, Fujian(1975-1986). Chinese J Atmos Sci, 1991, 15(4): 97-108. DOI: 10.3878/j.issn.1006-9895.1991.04.11
|
[8] |
曾光平, 吴明林, 林长城, 等. 古田水库人工降雨效果的综合评价. 应用气象学报, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229
Zeng G P, Wu M L, Lin C C, et al. A comprehensive evaluation of the effect of artificial precipitation in Gutian Reservior Area. J Appl Meteor Sci, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229
|
[9] |
曾光平. 非随机化人工增雨试验效果的统计模拟研究. 应用气象学报, 1999, 10(2): 255-256. DOI: 10.3969/j.issn.1001-7313.1999.02.017
Zeng G P. Statistical simulation study on the effect of non-randomized artificial precipitation enhancement experiment. J Appl Meteor Sci, 1999, 10(2): 255-256. DOI: 10.3969/j.issn.1001-7313.1999.02.017
|
[10] |
曾光平, 张长安, 李茂仑. 人工降水方案统计设计的统计数值模拟方法研究. 大气科学, 2000, 24(1): 131-141.
Zeng G P, Zhang C A, Li M L. Study on statistic numerical simulation method of precept statistic design of artificial precipitation. Chinese J Atmos Sci, 2000, 24(1): 131-141.
|
[11] |
蒋年冲, 吴林林, 曾光平. 抗旱型火箭人工增雨效果检验方法初步研究. 气象, 2006, 32(8): 54-58.
Jiang N C, Wu L L, Zeng G P. On effect test of drought-resistant rocketry artificial precipitation enhancement operation. Meteor Mon, 2006, 32(8): 54-58.
|
[12] |
王以琳, 李德生, 刘诗军. 飞机人工增雨分层历史回归效果检验方法探讨. 气候与环境研究, 2012, 17(6): 862-870.
Wang Y L, Li D S, Liu S J. Stratified sampling historical regression method for aircraft precipitation enhancement effect test. Climate Environ Res, 2012, 17(6): 862-870.
|
[13] |
王婉, 石玉恒, 李宏宇, 等. 对流云人工增雨效果检验技术方法及应用. 气象科技, 2014, 42(6): 1131-1136. DOI: 10.3969/j.issn.1671-6345.2014.06.031
Wang W, Shi Y H, Li H Y, et al. A method for evaluating effectiveness of convective cloud precipitation enhancement and its application. Meteor Sci Technol, 2014, 42(6): 1131-1136. DOI: 10.3969/j.issn.1671-6345.2014.06.031
|
[14] |
贾烁, 姚展予. 江淮对流云人工增雨作业效果检验个例分析. 气象, 2016, 42(2): 238-245.
Jia S, Yao Z Y. Case study on the convective clouds seeding effects in Yangtze-Huaihe Region. Meteor Mon, 2016, 42(2): 238-245.
|
[15] |
唐仁茂, 袁正腾, 向玉春, 等. 依据雷达回波自动选取对比云进行人工增雨效果检验的方法. 气象, 2010, 36(4): 96-100. DOI: 10.3969/j.issn.1673-8411.2010.04.028
Tang R M, Yuan Z T, Xiang Y C, et al. A method for selecting contrast cloud automatically based on radar echo in effectiveness evaluation of rain enhancement. Meteor Mon, 2010, 36(4): 96-100. DOI: 10.3969/j.issn.1673-8411.2010.04.028
|
[16] |
王以琳, 姚展予, 林长城. 人工增雨作业前后不同高度雷达回波分析. 干旱气象, 2018, 36(4): 644-651.
Wang Y L, Yao Z Y, Lin C C. Analysis of radar echoes at different heights before and after precipitation enhancement. J Arid Meteor, 2018, 36(4): 644-651.
|
[17] |
刘晴, 姚展予. 飞机增雨作业物理检验方法探究及个例分析. 气象, 2013, 39(10): 1359-1368. DOI: 10.7519/j.issn.1000-0526.2013.10.015
Liu Q, Yao Z Y. On physical eveluation of aircraft cloud seeding and case study. Meteor Mon, 2013, 39(10): 1359-1368. DOI: 10.7519/j.issn.1000-0526.2013.10.015
|
[18] |
胡淑萍, 林文, 林长城, 等. 2014—2022年古田人工增雨随机试验物理检验. 应用气象学报, 2023, 34(6): 706-716. DOI: 10.11898/1001-7313.20230606
Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. DOI: 10.11898/1001-7313.20230606
|
[19] |
楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验. 应用气象学报, 2019, 30(6): 665-676. DOI: 10.11898/1001-7313.20190603
Lou X F, Fu Y, Sun J. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. DOI: 10.11898/1001-7313.20190603
|
[20] |
洪延超, 周非非. "催化-供给"云降水形成机理的数值模拟研究. 大气科学, 2005, 29(6): 885-896. DOI: 10.3878/j.issn.1006-9895.2005.06.05
Hong Y C, Zhou F F. A numerical simulation study of precipitation formation mechanism of "seeding-feeding" cloud system. Chinese J Atmos Sci, 2005, 29(6): 885-896. DOI: 10.3878/j.issn.1006-9895.2005.06.05
|
[21] |
龚佃利, 王俊, 刘诗军. 山东降水云系微物理结构数值模拟和播云条件分析. 高原气象, 2006, 25(4): 723-730. DOI: 10.3321/j.issn:1000-0534.2006.04.022
Gong D L, Wang J, Liu S J. Numerical simulation of cloud microphysical structure and artificial seeding condition in precipitation cloud in Shandong Province. Plateau Meteor, 2006, 25(4): 723-730. DOI: 10.3321/j.issn:1000-0534.2006.04.022
|
[22] |
王婉, 姚展予. 2006年北京市人工增雨作业效果统计分析. 高原气象, 2009, 28(1): 195-202.
Wang W, Yao Z Y. Statistical estimation of artificial precipitation enhancement effectiveness in Beijing in 2006. Plateau Meteor, 2009, 28(1): 195-202.
|
[23] |
汪玲, 韦增岸, 程鹏, 等. 湖南人工增雨作业效果统计检验与分析. 气象研究与应用, 2019, 40(3): 85-89. DOI: 10.3969/j.issn.1673-8411.2019.03.020
Wang L, Wei Z A, Cheng P, et al. Statistical tests and analysis of effective evaluation of artificial precipitation enhancement operation of Hunan. J Meteor Res Appl, 2019, 40(3): 85-89. DOI: 10.3969/j.issn.1673-8411.2019.03.020
|
[24] |
刘晴. 人工增雨效果统计检验方案优选及个例分析. 北京: 中国气象科学研究院, 2013.
Liu Q. The Statistical Method Optimization and Case Study of Effectiveness Test in Precipitation Enhancement. Beijing: Academy of Meteorological Sciences, 2013.
|
[25] |
程鹏, 陈祺, 蒋友严, 等. 河西走廊石羊河流域近10年人工增雨效果检验评估. 高原气象, 2021, 40(4): 866-874.
Cheng P, Chen Q, Jiang Y Y, et al. Effect evaluation of artificial rainfall enhancement in the Shiyang River Basin of Hexi Corridor in the latest 10 years. Plateau Meteor, 2021, 40(4): 866-874.
|
[26] |
王飞, 李集明, 姚展予, 等. 我国人工增雨作业效果定量评估研究综述. 气象, 2022, 48(8): 945-962.
Wang F, Li J M, Yao Z Y, et al. Advances of quantitative evaluation studies of artificial precipitation enhancement in China. Meteor Mon, 2022, 48(8): 945-962.
|
[27] |
王婉, 姚展予. 人工增雨统计检验结果准确度分析. 气象科技, 2009, 37(2): 209-215. DOI: 10.3969/j.issn.1671-6345.2009.02.018
Wang W, Yao Z Y. Accuracy analysis of statistical evaluation result in precipitation enhancement experiment. Meteor Sci Technol, 2009, 37(2): 209-215. DOI: 10.3969/j.issn.1671-6345.2009.02.018
|
[28] |
叶家东, 李铁林. 区域趋势控制协变量回归分析效果评估方法研究. 气象科学, 2001, 21(1): 64-72.
Ye J D, Li T L. Evaluation methods of cloud seeding effect with regional control and covariable regression analysis. Sci Meteor Sinica, 2001, 21(1): 64-72.
|
[29] |
吴香华, 牛生杰, 金德镇, 等. 自然降水变异对人工增雨效果评估的影响. 中国科学(地球科学), 2015, 45(7): 1011-1019.
Wu X H, Niu S J, Jin D Z, et al. Influence of natural rainfall variability on the evaluation of artificial precipitation enhancement. Sci China(Earth Sci), 2015, 45(7): 1011-1019.
|
[30] |
房彬, 肖辉, 班显秀. CA-FCM方案与其它几种人工增雨评估方案的比较. 气象科技, 2008, 36(5): 612-621. DOI: 10.3969/j.issn.1671-6345.2008.05.021
Fang B, Xiao H, Ban X X. Comparison between CA-FCM and some other methods for evaluating precipitation enhancement effectiveness. Meteor Sci Technol, 2008, 36(5): 612-621. DOI: 10.3969/j.issn.1671-6345.2008.05.021
|
[31] |
房彬, 肖辉, 王振会, 等. 聚类分析在人工增雨效果检验中的应用. 南京气象学院学报, 2005, 28(6): 739-745. DOI: 10.3969/j.issn.1674-7097.2005.06.003
Fang B, Xiao H, Wang Z H, et al. Application of cluster analysis to the statistical assessment of the effect of artifical rain enhancement. J Nanjing Inst Meteor, 2005, 28(6): 739-745. DOI: 10.3969/j.issn.1674-7097.2005.06.003
|
[32] |
翟羽, 肖辉, 杜秉玉, 等. 聚类统计检验在人工增雨效果检验中的应用. 南京气象学院学报, 2008, 31(2): 228-233. DOI: 10.3969/j.issn.1674-7097.2008.02.012
Zhai Y, Xiao H, Du B Y, et al. Application of the cluster statistical test to effectiveness evaluation of artificial precipitation enhancement. J Nanjing Inst Meteor, 2008, 31(2): 228-233. DOI: 10.3969/j.issn.1674-7097.2008.02.012
|
[33] |
胡莹莹, 庞林, 王启光. 基于深度学习的7~15 d温度格点预报偏差订正. 应用气象学报, 2023, 34(4): 426-437. DOI: 10.11898/1001-7313.20230404
Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. DOI: 10.11898/1001-7313.20230404
|
[34] |
米前川, 高西宁, 李玥, 等. 深度学习方法在干旱预测中的应用. 应用气象学报, 2022, 33(1): 104-114. DOI: 10.11898/1001-7313.20220109
Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. DOI: 10.11898/1001-7313.20220109
|
[35] |
刘海知, 徐辉, 包红军, 等. 机器学习分类算法在降雨型滑坡预报中的应用. 应用气象学报, 2022, 33(3): 282-292. DOI: 10.11898/1001-7313.20220303
Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. DOI: 10.11898/1001-7313.20220303
|
[36] |
兰宇, 罗聪, 伍志方, 等. 三种机器学习方法在广东雷暴大风自动识别的应用效果评估. 热带气象学报, 2023, 39(2): 256-266.
Lan Y, Luo C, Wu Z F, et al. The assessment of application effectiveness of three machine learning methods in automatic identification of thunderstorm gale in Guangdong. J Trop Meteor, 2023, 39(2): 256-266.
|
[37] |
尹晓燕, 胡志群, 郑佳锋, 等. 利用深度学习填补双偏振雷达回波遮挡. 应用气象学报, 2022, 33(5): 581-593. DOI: 10.11898/1001-7313.20220506
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. DOI: 10.11898/1001-7313.20220506
|
[38] |
王星. 大数据分析: 方法与应用. 北京: 清华大学出版社, 2013.
Wang X. Big Data Analysis: Methods and Applications. Beijing: Tsinghua University Press, 2013.
|
[39] |
胡志晋. 检验人工降水效果的协变量统计分析方法. 气象, 1979, 5(9): 31-33.
Hu Z J. Covariance statistical analysis method for testing the effect of artificial precipitation. Meteor Mon, 1979, 5(9): 31-33.
|
[40] |
林长城, 姚展予, 林文, 等. 福建省古田试验区云系回波特征与人工增雨作业条件分析. 大气科学学报, 2017, 40(1): 138-144.
Lin C C, Yao Z Y, Lin W, et al. Analysis on cloud echoes characteristics and operational conditions of precipitation enhancement in Gutian of Fujian. Trans Atmos Sci, 2017, 40(1): 138-144.
|
[41] |
王星, 褚挺进. 非参数统计(第2版). 北京: 清华大学出版社, 2014.
Wang X, Chu T J. Non-parametric Statistics(2nd ed). Beijing: Tsinghua University Press, 2014.
|
[42] |
王衡军. 机器学习: Python sklearn TensorFlow 2.0微课视频版. 北京: 清华大学出版社, 2020.
Wang H J. Machine Learning: Python Sklearn Tensor Flow 2.0 Micro-Lesson Video Version. Beijing: Tsinghua University Press, 2020.
|
[1] | Han Nianfei, Yang Lu, Chen Mingxuan, Song Linye, Cao Weihua, Han Lei. Machine Learning Correction of Wind, Temperature and Humidity Elements in Beijing-Tianjin-Hebei Region[J]. Journal of Applied Meteorological Science, 2022, 33(4): 489-500. DOI: 10.11898/1001-7313.20220409 |
[2] | Xie Shun, Sun Xiaogong, Zhang Suping, Xiong Zhaohui, Wei Xiaomin, Cui Congxin. Precipitation Forecast Correction in South China Based on SVD and Machine Learning[J]. Journal of Applied Meteorological Science, 2022, 33(3): 293-304. DOI: 10.11898/1001-7313.20220304 |
[3] | Liu Haizhi, Xu Hui, Bao Hongjun, Xu Wei, Yan Xufeng, Lu Heng, Xu Chengpeng. Application of Machine Learning Classification Algorithm to Precipitation-induced Landslides Forecasting[J]. Journal of Applied Meteorological Science, 2022, 33(3): 282-292. DOI: 10.11898/1001-7313.20220303 |
[4] | Chen Yuwen, Huang Xiaomeng, Li Yi, Chen Yue, Tsui Chi, Huang Xing. Ensemble Learning for Bias Correction of Station Temperature Forecast Based on ECMWF Products[J]. Journal of Applied Meteorological Science, 2020, 31(4): 494-503. DOI: 10.11898/1001-7313.20200411 |
[5] | Li Ying, Chen Huailiang. Review of Machine Learning Approaches for Modern Agrometeorology[J]. Journal of Applied Meteorological Science, 2020, 31(3): 257-266. DOI: 10.11898/1001-7313.20200301 |
[6] | Wu Biwen, Wen Huayang, Hui Jun. The Inhomogeneity Test Method of Atmospheric Pressure Sequences Based on Γ-distribution[J]. Journal of Applied Meteorological Science, 2008, 19(4): 496-501. |
[7] | Liu Xiaoning, Ju Xiaohui, Fan Shaohua. A Research on the Applicability of Spatial Regression Test in Meteorological Datasets[J]. Journal of Applied Meteorological Science, 2006, 17(1): 37-43. |
[8] | Wei Fengying, Cao Hongxing, Wang Liping. Climatic Warming Process During 1980s—1990s in China[J]. Journal of Applied Meteorological Science, 2003, 14(1): 79-86. |
[9] | A New Method of Analysing Climate Jump and Its Application[J]. Journal of Applied Meteorological Science, 1997, 8(1): 119-123. |
[10] | Song Chaohui, Liu Xiaoning, Li Jiming. A Study of Testing Methods on Inhomogeneity of Temperature Sequences[J]. Journal of Applied Meteorological Science, 1995, 6(3): 289-296. |
1. |
王薪宇,房世波,韩佳昊. 基于NDVI的植被光学厚度统计降尺度方法. 应用气象学报. 2025(01): 33-42 .
![]() | |
2. |
曾小团,邹晨曦,范娇,王庆国,黄大剑,梁潇,丁禹钦,谭肇. 基于GRU深度学习的短时临近降水预报订正方法. 应用气象学报. 2024(05): 513-525 .
![]() | |
3. |
朱恩达,王亚强,赵妍,李斌. 东亚区域人工智能气象大模型预报技巧评估. 应用气象学报. 2024(06): 641-653 .
![]() |
Table 1 Sample size of different rainfall categories in 2014-2023
降水等级 | 雨强/(mm·h-1) | 样本量 | 样本比例/% |
弱降水 | [0.1, 5) | 25207 | 95.98 |
一般降水 | [5, 10) | 780 | 2.97 |
中等降水 | [10, 25) | 269 | 1.02 |
强降水 | [25, +∞) | 7 | 0.03 |