Li Wan, Zhao Hujia, Wang Changshuang, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. DOI: 10.11898/1001-7313.20240207.
Citation: Li Wan, Zhao Hujia, Wang Changshuang, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. DOI: 10.11898/1001-7313.20240207.

Variation Characteristics of Aerosol Optical Depth in Northeast China from 2003 to 2022

More Information
  • Based on the MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and MEIC (multi-resolution emission inventory for China) in Northeast China from 2003 to 2022, the spatial distribution and interannual trend of AOD in Northeast China are analyzed. Effects of meteorological factors and anthropogenic emissions on AOD changes in Northeast China are discussed. Results show that the AOD maximum in central Liaoning is 0.6, followed by an average AOD of 0.4 in western Jilin and 0.3 in Heilongjiang. The average AOD in Northeast China is lower than that in north China, Yangtze River Delta and other frequent pollution areas. High AOD occurs in spring and summer in Northeast China, and it decreases spatially in autumn while increases in winter. The summer AOD in Liaoning is significantly higher than that in other regions, when the average value in central Liaoning and the Bohai Rim increases to 0.6. The highest values of AOD in different seasons occur in Liaoning, followed by Jilin and Heilongjiang. The increase of AOD in summer is mainly related to environmental humidity, and adverse meteorological conditions and local emissions have certain effects on near-surface atmospheric extinction in winter. The annual occurrence frequency of AOD in the range of [0.1, 0.2) and [0.2, 0.3) in Liaoning is up to 50%, the annual occurrence frequency of AOD in the range of [0.1, 0.2) in Jilin and Heilongjiang is up to 25%-30%, and the annual occurrence frequency of extreme clean condition in Heilongjiang is up to 15%. Affected by dust events in spring, the occurrence frequency of AOD [0.2, 0.3) and AOD [0.3, 0.4) in Northeast China is 25%. The regional average value of AOD in Northeast China is higher in 2003 and 2014, which is mainly influenced by boundary layer meteorological elements and anthropogenic emission of SO2, PM2.5, organic carbon (OC) and NO2. In Northeast China, AOD is negatively correlated with boundary layer height and average wind speed, and positively correlated with anthropogenic emissions. The correlation coefficient between AOD and anthropogenic emissions of SO2, PM2.5 and OC is the highest in Liaoning. From 2003 to 2022, AOD in Liaoning shows a weak negative growth trend (about-0.1 per decade), while the AOD in Jilin and Heilongjiang shows little change trend. From the perspective of seasonal interannual trend, there is a transition from a negative increasing trend in spring to a positive increasing trend in summer before 2012. After 2013, the summer AOD in Northeast China shows a negative growth trend (-0.3 per decade), which confirms that the contribution of summer aerosol to atmospheric extinction in Northeast China is decreasing in the past 10 years.
  • Fig  1.   Distribution of AOD, topographic height, population size and anthropogenic SO2 emissions in Northeast China from Mar 2003 to Feb 2023

    Fig  2.   Seasonal distribution of AOD in Northeast China from Mar 2003 to Feb 2023

    Fig  3.   Regional average of AOD in Northeast China from Mar 2003 to Feb 2023

    Fig  4.   Seasonal distribution of boundary layer height (the shaded) and wind field (the vector) in Northeast China from Mar 2003 to Feb 2023

    Fig  5.   Frequency occurrence of AOD in Northeast China from Mar 2003 to Feb 2023

    Fig  6.   Interannual variation of AOD in Northeast China from Mar 2003 to Feb 2023

    Fig  7.   Interannual variation of wind speed, precipitation and boundary layer height in Northeast China from 2003 to 2020

    Fig  8.   Interannual variation of SO2, PM2.5, OC and NOx in Northeast China from 2003 to 2020

    Fig  9.   Interdecadal variation trend of AOD in Northeast China

    (· denotes the trend passing the test of 0.05 level)

    Fig  10.   Interdecadal variation trend of AOD in different seasons in Northeast China

    (· denotes the trend passing the test of 0.05 level)

    Table  1   Correlation coefficient between AOD and meteorological and anthropogenic emissions in Northeast China from 2003 to 2020

    气象因子与人为排放源 辽宁 吉林 黑龙江
    边界层高度 -0.56* -0.42 -0.43
    平均风速 -0.52* -0.60* -0.46
    SO2 0.62* 0.25 0.10
    PM2.5 0.61* 0.34 0.25
    OC 0.60* 0.36 0.29
    NOx 0.17 0.23 0.25
    注:*表示达到0.05显著性水平。
    DownLoad: CSV
  • [1]
    Charlson R J, Schwartz S E, Hales J M, et al.Climate forcing by anthropogenic aerosols.Science, 1992, 255(5043):423-430. DOI: 10.1126/science.255.5043.423
    [2]
    Watson J G. Visibility: Science and regulation. J Air Waste Manag Assoc, 2002, 52(6): 628-713. DOI: 10.1080/10473289.2002.10470813
    [3]
    Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102(D6): 6831-6864. DOI: 10.1029/96JD03436
    [4]
    Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot. Science, 2000, 288(5468): 1042-1047. DOI: 10.1126/science.288.5468.1042
    [5]
    李睿劼, 黄梦宇, 丁德平, 等. 基于70 m3膨胀云室的暖云滴谱试验研究. 应用气象学报, 2023, 34(5): 540-551. DOI: 10.11898/1001-7313.20230503

    Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. DOI: 10.11898/1001-7313.20230503
    [6]
    Dubovik O, Holben B N, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci, 2002, 59(3): 590-608. DOI: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
    [7]
    吴啸天, 王晓妍, 郑栋, 等. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报, 2023, 34(5): 608-618. DOI: 10.11898/1001-7313.20230509

    Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. DOI: 10.11898/1001-7313.20230509
    [8]
    Breéon F M, Tanreé D, Generoso S. Aerosol effect on cloud droplet size monitored from satellite. Science, 2002, 295(5556): 834-838. DOI: 10.1126/science.1066434
    [9]
    Allen S, Plattner G, Nauels A, et al. Climate Change 2013: The physical science basis. An overview of the working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change(IPCC). Computational Geometry, 2007, 18(2): 95-123.
    [10]
    Gui K, Che H Z, Zheng Y, et al. Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007-2019) of CALIOP observations. Atmos Chem Phys, 2021, 21(19): 15309-15336. DOI: 10.5194/acp-21-15309-2021
    [11]
    Gui K, Che H Z, Li L, et al. The significant contribution of small-sized and spherical aerosol particles to the decreasing trend in total aerosol optical depth over land from 2003 to 2018. Engineering, 2022, 16: 82-92. DOI: 10.1016/j.eng.2021.05.017
    [12]
    Holben B N, Eck T F, Slutsker I, et al. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 1998, 66(1): 1-16. DOI: 10.1016/S0034-4257(98)00031-5
    [13]
    Goloub P, Li Z, Dubovik O, et al. PHOTONS/AERONET Sunphotometer Network Overview: Description, Activities, Results//Proc SPIE, Fourteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, 2008, 6936: 218-232.
    [14]
    Bokoye A I, Royer A, O'Neil N T, et al. Characterization of atmospheric aerosols across Canada from a ground-based sunphotometer network: AEROCAN. Atmosphere-Ocean, 2001, 39(4): 429-456. DOI: 10.1080/07055900.2001.9649687
    [15]
    Takamura T, Nakajima T. Overview of SKYNET and its activities. Optica Puray Aplicada, 2004, 37: 3303-3308.
    [16]
    杨先逸, 车慧正, 陈权亮, 等. 天空辐射计观测反演北京城区气溶胶光学特性. 应用气象学报, 2020, 31(3): 373-384. DOI: 10.11898/1001-7313.20200311

    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. DOI: 10.11898/1001-7313.20200311
    [17]
    梁苑新, 车慧正, 王宏, 等. 北京一次污染过程气溶胶光学特性及辐射效应. 应用气象学报, 2020, 31(5): 583-594. DOI: 10.11898/1001-7313.20200506

    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. DOI: 10.11898/1001-7313.20200506
    [18]
    Levy R C, Mattoo S, Munchak L A, et al. The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Technol, 2013, 6(11): 2989-3034. DOI: 10.5194/amt-6-2989-2013
    [19]
    高洋, 蔡淼, 曹治强, 等. "21·7"河南暴雨环境场及云的宏微观特征. 应用气象学报, 2022, 33(6): 682-695. DOI: 10.11898/1001-7313.20220604

    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. DOI: 10.11898/1001-7313.20220604
    [20]
    郭雪星, 瞿建华, 叶凌梦, 等. 基于朴素贝叶斯的FY-4A/AGRI云检测方法. 应用气象学报, 2023, 34(3): 282-294. DOI: 10.11898/1001-7313.20230303

    Guo X X, Qu J H, Ye L M, et al. FY-4A/AGRI cloud detection method based on naive Bayesian algorithm. J Appl Meteor Sci, 2023, 34(3): 282-294. DOI: 10.11898/1001-7313.20230303
    [21]
    高玲, 张里阳, 李俊, 等. 利用AVHRR数据反演陆地气溶胶光学厚度. 应用气象学报, 2014, 25(1): 42-51. http://qikan.camscma.cn/article/id/20140105

    Gao L, Zhang L Y, Li J, et al. Retrieval of atmospheric aerosol optical depth over land from AVHRR. J Appl Meteor Sci, 2014, 25(1): 42-51. http://qikan.camscma.cn/article/id/20140105
    [22]
    Che H, Xia X, Zhu J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos Chem Phys, 2014, 14(4): 2125-2138. DOI: 10.5194/acp-14-2125-2014
    [23]
    郭蕾, 李谢辉, 刘雨亭. 城市化对川渝地区极端气候事件的影响. 应用气象学报, 2023, 34(5): 574-585. DOI: 10.11898/1001-7313.20230506

    Guo L, Li X H, Liu Y T. Impacts of urbanization on extreme climate events in Sichuan-Chongqing Region. J Appl Meteor Sci, 2023, 34(5): 574-585. DOI: 10.11898/1001-7313.20230506
    [24]
    Xia X G, Chen H B, Li Z Q, et al. Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China. J Geophys Res, 2007, 112, D22S02. DOI: 10.1029/2006JD007562.
    [25]
    Xin J Y, Wang Y S, Li Z Q, et al. Aerosol optical depth(AOD) and Ångström exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res, 2007, 112, D05203. DOI: 10.1029/2006JD007075.
    [26]
    Che H Z, Zhang X Y, Chen H B, et al. Instrument calibration and aerosol optical depth validation of the China aerosol remote Sensing network. J Geophys Res, 2009, 114, D03206. DOI: 10.1029/2008JD011030.
    [27]
    颜鹏, 刘桂清, 周秀骥, 等. 上甸子秋冬季雾霾期间气溶胶光学特性. 应用气象学报, 2010, 21(3): 257-265. http://qikan.camscma.cn/article/id/20100301

    Yan P, Liu G Q, Zhou X J, et al. Characteristics of aerosol optical properties during haze and fog episodes at Shangdianzi in Northern China. J Appl Meteor Sci, 2010, 21(3): 257-265. http://qikan.camscma.cn/article/id/20100301
    [28]
    Wang X, Liu J, Che H Z, et al. Spatial and temporal evolution of natural and anthropogenic dust events over Northern China. Sci Rep, 2018, 8(1): 2141. DOI: 10.1038/s41598-018-20382-5
    [29]
    Liang Y X, Gui K, Zheng Y, et al. Impact of biomass burning in south and Southeast Asia on background aerosol in southwest China. Aerosol Air Qual Res, 2019, 19(5): 1188-1204. DOI: 10.4209/aaqr.2018.08.0324
    [30]
    Zhao H J, Che H Z, Zhang X Y, et al. Aerosol optical properties over urban and industrial region of Northeast China by using ground-based sun-photometer measurement. Atmos Environ, 2013, 75: 270-278. DOI: 10.1016/j.atmosenv.2013.04.048
    [31]
    Wang P, Che H Z, Zhang X C, et al. Aerosol optical properties of regional background atmosphere in Northeast China. Atmos Environ, 2010, 44(35): 4404-4412. DOI: 10.1016/j.atmosenv.2010.07.043
    [32]
    Wu Y F, Zhu J, Che H Z, et al. Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in Northeast China. Atmos Res, 2015, 157: 56-65. DOI: 10.1016/j.atmosres.2015.01.021
    [33]
    Zhao H J, Che H Z, Ma Y J, et al. Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmos Res, 2015, 166: 204-212. DOI: 10.1016/j.atmosres.2015.07.003
    [34]
    Zhao H J, Che H Z, Xia X G, et al. Multiyear ground-based measurements of aerosol optical properties and direct radiative effect over different surface types in Northeastern China. J Geophys Res Atmos, 2018, 123(24): 13887-13916.
    [35]
    宗雪梅, 邱金桓, 王普才. 近10年中国16个台站大气气溶胶光学厚度的变化特征分析. 气候与环境研究, 2005, 10(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200502006.htm

    Zong X M, Qiu J H, Wang P C. Characteristics of atmospheric aerosol optical depth over 16 radiation stations in the last 10 years. Clim Environ Res, 2005, 10(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200502006.htm
    [36]
    杨琨, 孙照渤, 倪东鸿. 1999—2003年我国气溶胶光学厚度的变化特征. 南京气象学院学报, 2008, 31(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801012.htm

    Yang K, Sun Z B, Ni D H. Characteristics of atmospheric aerosol optical depth over China during 1999-2003. J Nanjing Inst Meteor, 2008, 31(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200801012.htm
    [37]
    王继志, 李多, 杨元琴, 等. 中国北方地区冬季雨雪年度变化与大气气溶胶分布特征研究. 气象与环境学报, 2011, 27(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201106013.htm

    Wang J Z, Li D, Yang Y Q, et al. Characteristics of annual variations of winter rain/snow and atmospheric aerosol distributions in the north of China. J Meteor Environ, 2011, 27(6): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201106013.htm
    [38]
    Wei J, Li Z Q, Peng Y R, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos Environ, 2019, 201: 428-440. DOI: 10.1016/j.atmosenv.2018.12.004
    [39]
    Che H Z, Xia X G, Zhao H J, et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China aerosol remote sensing network. Atmos Chem Phys, 2019, 19(18): 11843-11864. DOI: 10.5194/acp-19-11843-2019
    [40]
    Zhao H J, Gui K, Ma Y J, et al. Climatological variations in aerosol optical depth and aerosol type identification in Liaoning of Northeast China based on MODIS data from 2002 to 2019. Sci Total Environ, 2021, 781. DOI: 10.1016/j.scitotenv.2021.146810.
    [41]
    Che H, Zhang X Y, Xia X, et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China aerosol remote sensing network(CARSNET) 2002-2013. Atmos Chem Phys, 2015, 15(13): 7619-7652. DOI: 10.5194/acp-15-7619-2015
    [42]
    Ma Y J, Zhao H J, Dong Y S, et al. Comparison of two air pollution episodes over Northeast China in winter 2016/17 using ground-based lidar. J Meteor Res, 2018, 32(2): 313-323. DOI: 10.1007/s13351-018-7047-4
    [43]
    Zhao H J, Che H Z, Gui K, et al. Interdecadal variation in aerosol optical properties and their relationships to meteorological parameters over Northeast China from 1980 to 2017. Chemosphere, 2020, 247: 125737. DOI: 10.1016/j.chemosphere.2019.125737
    [44]
    赵胡笳, 马雁军, 王扬锋, 等. 沈阳一次雾霾天气颗粒物浓度及光学特征变化. 中国环境科学, 2015, 35(5): 1288-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505002.htm

    Zhao H J, Ma Y J, Wang Y F, et al. Characteristics of particle mass concentrations and aerosol optical properties during a fog-haze event in Shenyang. China Environ Sci, 2015, 35(5): 1288-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505002.htm
    [45]
    Zhao H J, Gui K, Ma Y J, et al. Climatology and trends of aerosol optical depth with different particle size and shape in Northeast China from 2001 to 2018. Sci Total Environ, 2021, 763. DOI: 10.1016/j.scitotenv.2020.142979.
  • Cited by

    Periodical cited type(3)

    1. 奚立宗,把黎,庞朝云,李宝梓,黄山. 祁连山北坡沙尘天气气溶胶特征的飞机观测. 应用气象学报. 2024(03): 311-322 . 本站查看
    2. 延昊,刘桂青,曹云,莫建飞,孙应龙,陈紫璇,程路. 2000—2023年京津冀蓝天等级日数遥感研究. 应用气象学报. 2024(05): 606-618 . 本站查看
    3. 耿心泽,刘畅,刘旭艳,王玉龙,张智清,梁林林. 2020年1月哈尔滨PM_(2.5)重污染形成机制. 应用气象学报. 2024(06): 737-746 . 本站查看

    Other cited types(1)

Catalog

    Figures(10)  /  Tables(1)

    Article views403 PDF downloads82 Cited by: 4
    • Received : 2023-10-18
    • Accepted : 2023-12-05
    • Published : 2024-03-26

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return