[1]
|
Qie X S, Zhang Q L, Yuan T, et al. Lightning Physics. Beijing: Science Press, 2013.
|
[2]
|
Araujo L S, Guimarães M B, Pedrosa A G, et al. Assessing Events of Upward Lightning Measured at Morro do Cachimbo Station//2012 International Conference on Lightning Protection(ICLP). IEEE, 2012: 1-4.
|
[3]
|
Cummins K L, Krider E P, Olbinski M, et al. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders. Atmos Res, 2018, 202: 169-174. doi: 10.1016/j.atmosres.2017.11.007
|
[4]
|
Lü W T, Chen L W, Ma Y, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. doi: 10.11898/1001-7313.20200201
|
[5]
|
Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi: 10.11898/1001-7313.20220307
|
[6]
|
Warner T A. Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders//30th International Conference on Lightning Protection(ICLP). IEEE, 2010: 1-4.
|
[7]
|
Lu W T, Chen L W, Zhang Y, et al. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J Geophys Res, 2012, 117(D19). DOI: 10.1029/2012JD018035.
|
[8]
|
Gao Y, Lu W T, Ma Y, et al. Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou. Atmos Res, 2014, 149: 193-203. doi: 10.1016/j.atmosres.2014.06.008
|
[9]
|
Saba M M F, Schumann C, Warner T A, et al. Upward lightning flashes characteristics from high-speed videos. J Geophys Res Atmos, 2016, 121(14): 8493-8505. doi: 10.1002/2016JD025137
|
[10]
|
Qi Q, Lu W T, Ma Y, et al. High-speed video observations of the fine structure of a natural negative stepped leader at close distance. Atmos Res, 2016, 178/179: 260-267. doi: 10.1016/j.atmosres.2016.03.027
|
[11]
|
Gao P L, Shi D D, Wu T, et al. Characteristics of the preliminary breakdown in inverted-polarity intracloud lightning flashes. J Appl Meteor Sci, 2023, 34(3): 324-335. doi: 10.11898/1001-7313.20230306
|
[12]
|
Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410
|
[13]
|
Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi: 10.11898/1001-7313.20230508
|
[14]
|
Arevalo L, Cooray V. Influence of Multiple Upward Connecting Leaders Initiated from the Same Structure on the Lightning Attachment Process. X International Symposium on Lightning Protection-SIPDA, 2009.
|
[15]
|
Cooray V, Fernando M, Arevalo L, et al. Interaction of Multiple Connecting Leaders Issued from a Grounded Structure Simulated Using a Self Consistent Leader Inception and Propagation Model(SLIM)//30th International Conference on Lightning Protection(ICLP). IEEE, 2010: 1-5.
|
[16]
|
Lalande P, Mazur V. A physical model of branching in upward leaders. Aerospace Lab, 2012, 5: 1-7. doi: 10.4271/2012-01-1509
|
[17]
|
Bazelyan E M, Raizer Y P, Aleksandrov N L, et al. Corona processes and lightning attachment: The effect of wind during thunderstorms. Atmos Res, 2009, 94(3): 436-447. doi: 10.1016/j.atmosres.2009.07.002
|
[18]
|
Ren X Y, Zhang Y J, Lü W T, et al. Simulation of lightning leaders and connection process with structures. J Appl Meteor Sci, 2010, 21(4): 450-457. doi: 10.3969/j.issn.1001-7313.2010.04.008
|
[19]
|
Ren X Y, Zhang Y J, Lü W T, et al. Establishment and application of random lightning leader model. J Appl Meteor Sci, 2011, 22(2): 194-202. doi: 10.3969/j.issn.1001-7313.2011.02.008
|
[20]
|
Tan Y B, Zhang D D, Zhou B W, et al. A numerical study on characteristics of cloud-to-ground lightning near surface configuration. J Appl Meteor Sci, 2015, 26(2): 211-220. doi: 10.11898/1001-7313.20150209
|
[21]
|
Yu J H, Tan Y B, Zheng T X, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. doi: 10.11898/1001-7313.20200609
|
[22]
|
Liao Y H, Lü W T, Qi Q, et al. Simulation of various connecting patterns during the lightning connection process based on the stochastic lightning leader model. J Appl Meteor Sci, 2016, 27(3): 361-369. doi: 10.11898/1001-7313.20160311
|
[23]
|
Wu S S. Characteristic Analysis and Simulation of Downward Cloud-to-ground Lightning Flashes Around the Canton Tower. Beijing: Chinese Academy of Meteorological Sciences, 2019.
|
[24]
|
Jiang R, Lyu W, Wu B, et al. Simulation of cloud-to-ground lightning strikes to structures based on an improved stochastic lightning model. J Atmos Sol-Terr Phys, 2020. DOI: 10.1016/j.jastp.2020.105274.
|
[25]
|
Tan Y B, Zhang X, Xiang C Y, et al. Three-dimensional numerical simulation of side flash on buildings. J Appl Meteor Sci, 2017, 28(2): 227-236. doi: 10.11898/1001-7313.20170210
|
[26]
|
Lei Y N, Tan Y B, Yu J H, et al. Numerical simulation on multiple upward leader attachment process of tall and low buildings. J Appl Meteor Sci, 2022, 33(1): 80-91. doi: 10.11898/1001-7313.20220107
|
[27]
|
|
[28]
|
Becerra M, Cooray V. On the velocity of positive connecting leaders associated with negative downward lightning leaders. Geophys Res Lett, 2008, 35(2): 196-199.
|
[29]
|
Qi Q, Lü W T, Wu B, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. doi: 10.11898/1001-7313.20200203
|
[30]
|
Biagi C J, Uman M A, Gopalakrishnan J, et al. Determination of the electric field intensity and space charge density versus height prior to triggered lightning. J Geophys Res, 2011, 116(D15). DOI: 10.1029/2011JD015710.
|
[31]
|
Qi Q, Lyu W, Wang D, et al. Two-dimensional striking distance of lightning flashes to a cluster of tall buildings in Guangzhou. J Geophys Res Atmos, 2021, 126(22). DOI: 10.1029/2021JD034613.
|
[32]
|
Eriksson A J. The incidence of lightning strikes to power lines. IEEE Trans Power Deliv, 1987, 2(3): 859-870. doi: 10.1109/TPWRD.1987.4308191
|
[33]
|
Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model. Ⅰ. Description of the model and evaluation of exposure of free-standing structures. IEEE Trans Power Deliv, 1990, 5(4): 2009-2022. doi: 10.1109/61.103696
|
[34]
|
Rizk F A M. Modeling of lightning incidence to tall structures. Ⅱ. Application. IEEE Trans Power Deliv, 1994, 9(1): 172-193. doi: 10.1109/61.277690
|
[35]
|
Ait-Amar S, Berger G. Lightning Interception on Elevated Building//Proc of 5th WSEAS Int Conf on Power Systems & EMC, 2005: 17-23.
|
[36]
|
Gao Y. The Three-dimensional Propagation Characteristics of Flash Leaders in the Attachment Process. Beijing: Chinese Academy of Meteorological Sciences, 2014.
|
[37]
|
|
[38]
|
Guo X F, Zhang Q L. Effects of geometrical parameters of two height-unequal adjacent objects on corona discharges from their tips during a thunderstorm. Atmos Res, 2017, 190(6): 113-120.
|