Wang Xuejuan, Hua Leyan, Wang Binghao, et al. Spectral correction impacts of lightning from tall buildings on channel temperature inversion. J Appl Meteor Sci, 2024, 35(4): 493-501. DOI:  10.11898/1001-7313.20240409.
Citation: Wang Xuejuan, Hua Leyan, Wang Binghao, et al. Spectral correction impacts of lightning from tall buildings on channel temperature inversion. J Appl Meteor Sci, 2024, 35(4): 493-501. DOI:  10.11898/1001-7313.20240409.

Spectral Correction Impacts of Lightning from Tall Buildings on Channel Temperature Inversion

DOI: 10.11898/1001-7313.20240409
  • Received Date: 2024-03-05
  • Rev Recd Date: 2024-04-15
  • Publish Date: 2024-07-31
  • During the lightning spectral observation, the spectral intensity is significantly reduced due to instrumental factors and other factors. The spectral intensity attenuation significantly affects the accuracy of temperature calculations. Temperature, as a fundamental parameter, is inextricably linked to other parameters within the lightning discharge channel, and accurate determination of the plasma temperature is crucial for gaining insights into the dynamic and physical processes of the discharge. Up to now, there have been no detailed and definitive reports on the influence of instrumental response on tall building lightning spectroscopy and temperature diagnostics.Based on the spectral analysis of a lightning return stroke channel spectrum, the spectral is corrected by accounting for the instrumental response. Then, the spectral structure and line intensities before and after correction are compared and analyzed. Nitrogen ionized (NII) lines in the visible region and neutral oxygen (OI) lines in the near-infrared region are selected for temperature calculations using the multi-line method. The influence of spectral correction on the temperature analysis of the tall building lightning return stroke channel is investigated. Results show that after correction, the intensity of spectral lines is significantly enhanced. In particular, the spectral line structure in the visible region changes significantly, while the spectral line structure in the near-infrared region changes little. The continuum radiation in the visible region of the corrected tall building lightning spectrum is significantly enhanced, which is different from the results of natural cloud-to-ground lightning spectra after considering the instrumental response correction. Due to the significant enhancement of the continuum radiation intensity in the visible region resulting from the spectral correction, the continuum radiation intensity should be subtracted when using NII lines in the visible region to calculate the tall building lightning temperature. In this case, the coefficient of fitted line and the calculation accuracy increases, while the average temperature decreases by 4660 K compared to that before correction. Conversely, since the original continuum radiation intensity of tall building lightning spectra in the near-infrared region is relatively low, the spectral correction has little effect on the continuum spectrum intensity. Therefore, after spectral correction, when using OI lines in the near-infrared region to calculate the temperature, the determination coefficient of the linear fitting increases, resulting in improved fitting performance and an increase of 1540 K in the average temperature.
  • Fig. 1  Original spectrogram of a high structure lightning return stroke after inversion

    Fig. 2  Factor curves of camera and grating response

    Fig. 3  Spectrograms before and after correction at different channel height, and corresponding continuous spectrum

    Fig. 4  Boltzmann plots and linear fitting with NII spectral lines

    Fig. 5  Boltzmann plots and linear fitting with OI spectral lines

    Table  1  Lightning discharge channel temperature and corresponding determination coefficients with NII and OI lines under different conditions

    通道高度/m 相机响应校正 光栅响应校正 NII谱线计算的温度/K NII谱线拟合决定系数 OI谱线计算的温度/K OI谱线拟合决定系数
    140 44140 0.451 14370 0.950
    140 41070 0.484 14200 0.984
    140 41670 0.984 16240 0.991
    690 31600 0.955 16680 0.910
    690 27570 0.991 16990 0.948
    690 31180 0.989 19270 0.999
    1490 54500 0.630 19440 0.938
    1490 42370 0.450 18910 0.991
    1490 43410 0.968 19600 0.999
    DownLoad: Download CSV
  • [1]
    Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi:  10.11898/1001-7313.20230410
    [2]
    Li Y, Wang G F. Design and implementation of Meteorological Disaster Risk Management System. J Appl Meteor Sci, 2022, 33(5): 628-640. doi:  10.11898/1001-7313.20220510
    [3]
    Pickering E C. Spectrum of lightning. Astron Nachr, 1901, 157: 207. doi:  10.1002/asna.19011571205
    [4]
    Fox P. The spectrum of lightning. Astrophys J, 1903, 18: 294-297.
    [5]
    Prueitt M L. The excitation temperature of lightning. J Geophys Res, 1963, 68(3): 803-811. doi:  10.1029/JZ068i003p00803
    [6]
    Orville R E. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part Ⅱ. A quantitative analysis. J Atmos Sci, 1968, 25(5): 839-851. doi:  10.1175/1520-0469(1968)025<0839:AHSTRS>2.0.CO;2
    [7]
    Walker T D, Christian H J. Triggered lightning spectroscopy: 2. A quantitative analysis. J Geophys Res Atmos, 2019, 124(7): 3930-3942. doi:  10.1029/2018JD029901
    [8]
    Chuang H. Uncertainties in the measurement of helium plasma temperature by the relative intensity method. Appl Opt, 1965, 4(12): 1589-1592. doi:  10.1364/AO.4.001589
    [9]
    Ouyang Y H, Yuan P, Jia X D. Multiple-line method used to calculate lightning channel temperature. J Northwest Norm Univ Nat Sci, 2006, 42(3): 49-53. doi:  10.3969/j.issn.1001-988X.2006.03.014
    [10]
    Mu Y L. Temperature Distribution and Evolution Characteristic in Lightning Return Stroke Channel. Lanzhou: Northwest Normal University, 2016.
    [11]
    Cen J Y, Yuan P, Qu H Y, et al. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma. Phys Plasmas, 2011, 18(11). DOI:  10.1063/1.3541837.
    [12]
    Liu G R, Yuan P, An T T, et al. Using Saha-Boltzmann plot to diagnose lightning return stroke channel temperature. J Geophys Res Atmos, 2019, 124(8): 4689-4698. doi:  10.1029/2018JD028620
    [13]
    Wang X J, Xu W Q, Hua L Y, et al. Spectral analysis and study on the channel temperature of lightning continuing current process. Spectrosc Spectr Anal, 2022, 42(7): 2069-2075. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202207012.htm
    [14]
    Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi:  10.11898/1001-7313.20230508
    [15]
    Wu B, Lü W T, Qi Q, et al. High-speed video observations on abrupt elongations of the positive end of bidirectional leader. J Appl Meteor Sci, 2020, 31(2): 146-155. doi:  10.11898/1001-7313.20200202
    [16]
    Hegazy H. Oxygen spectral lines for diagnostics of atmospheric laser-induced plasmas. Appl Phys B, 2010, 98(2): 601-606.
    [17]
    Wan R, Yuan P, An T, et al. Effects of atmospheric attenuation on the lightning spectrum. J Geophys Res Atmos, 2021, 126(22). DOI:  10.1029/2021JD035387.
    [18]
    Xu W Q, Lü W T, Qi Q, et al. Luminosity and current characteristics of metal-vaporized channel of an artificially triggered lightning. J Appl Meteor Sci, 2023, 34(6): 739-748. doi:  10.11898/1001-7313.20230609
    [19]
    Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi:  10.11898/1001-7313.20220307
    [20]
    Wang X J, Wang H T, Hua L Y, et al. Analysis on lightning spectral characteristics of Canton Tower. Acta Opt Sinica, 2023, 43(12): 343-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202312034.htm
    [21]
    Qie X S, Jiang R B, Wang C X, et al. Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J Geophys Res, 2011, 116(D10). DOI:  10.1029/2010JD015331.
    [22]
    Wang X J, Yuan P, Cen J Y, et al. Study on the radius and energy transmission properties of lightning discharge channel by the spectra. Acta Phys Sinica, 2013, 62(10): 486-493. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201310075.htm
    [23]
    Uman M, Orville R. The opacity of lightning. J Geophys Res, 1965, 70: 5491-5497. doi:  10.1029/JZ070i022p05491
    [24]
    Uman M A. Determination of lightning temperature. J Geophys Res, 1969, 74(4): 949-957. doi:  10.1029/JB074i004p00949
    [25]
    Wang X J, Wang H T, Lyu W T, et al. First experimental verification of opacity for the lightning near-infrared spectrum. Geophys Res Lett, 2022, 49(13). DOI:  10.1029/2022GL098883.
    [26]
    Qiu D R. Atomic Spectral Analysis. Shanghai: Fudan Press, 2002.
    [27]
    Wu S S, Lü W T, Qi Q, et al. Characteristics of downward cloud-to-ground lightning flashes around Canton Tower based on optical observations. J Appl Meteor Sci, 2019, 30(2): 203-210. doi:  10.11898/1001-7313.20190207
    [28]
    Lü W T, Chen L, Ma Y, et al. Advances of observation and study on tall-object lightning in Guangzhou over the last decade. J Appl Meteor Sci, 2020, 31(2): 129-145. doi:  10.11898/1001-7313.20200201
    [29]
    Qi Q, Lü W T, Wu B, et al. Two-dimensional optical observation of striking distance of lightning flashes to two buildings in Guangzhou. J Appl Meteor Sci, 2020, 31(2): 156-164. doi:  10.11898/1001-7313.20200203
    [30]
    Zhao J C, Yuan P, Cen J Y, et al. Characteristics and applications of near-infrared emissions from lightning. J Appl Phys, 2013, 114(16). DOI:  10.1063/1.4827182.
    [31]
    Kieu N, Gordillo-Vázquez F J, Passas M, et al. Submicrosecond spectroscopy of lightning-like discharges: Exploring new time regimes. Geophys Res Lett, 2020, 47(15). DOI:  10.1029/2020GL088755.
    [32]
    Kieu N, Gordillo-Vázquez F J, Passas M, et al. High-speed spectroscopy of lightning-like discharges: Evidence of molecular optical emissions. J Geophys Res Atmos, 2021, 126(11). DOI:  10.1029/2021JD035016.
    [33]
    Boggs L D, Liu N Y, Nag A, et al. Vertical temperature profile of natural lightning return strokes derived from optical spectra. J Geophys Res Atmos, 2021, 126(8). DOI:  10.1029/2020JD034438.
    [34]
    Orville R E, Henderson R W. Absolute spectral irradiance measurements of lightning from 375 to 880 nm. J Atmos Sci, 1984, 41(21): 3180-3187. doi:  10.1175/1520-0469(1984)041<3180:ASIMOL>2.0.CO;2
    [35]
    Weidman C, Boye A, Crowell L. Lightning spectra in the 850- to 1400-nm near-infrared region. J Geophys Res, 1989, 94(D11): 13249-13257. doi:  10.1029/JD094iD11p13249
    [36]
    Wang X J, Xu W Q, Wang H T, et al. Spectral features, temperature and electron density properties of lightning M-component. Acta Phys Sinica, 2021, 70(9): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202109042.htm
    [37]
    Wang X J, Yuan P, Cen J Y, et al. Correlation between the spectral features and electric field changes for natural lightning return stroke followed by continuing current with M-components. J Geophys Res Atmos, 2016, 121(14): 8615-8624. doi:  10.1002/2016JD025314
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (181) PDF downloads(36) Cited by()
    • Received : 2024-03-05
    • Accepted : 2024-04-15
    • Published : 2024-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint