Chen Xuejiao, Hua Jiajia, Pei Yujie, et al. S-band and X-band radar observation characteristics of EF2 tornado at Qingyuan of Baoding in 2021. J Appl Meteor Sci, 2024, 35(5): 564-576. DOI:   10.11898/1001-7313.20240505.
Citation: Chen Xuejiao, Hua Jiajia, Pei Yujie, et al. S-band and X-band radar observation characteristics of EF2 tornado at Qingyuan of Baoding in 2021. J Appl Meteor Sci, 2024, 35(5): 564-576. DOI:   10.11898/1001-7313.20240505.

S-band and X-band Radar Observation Characteristics of EF2 Tornado at Qingyuan of Baoding in 2021

DOI: 10.11898/1001-7313.20240505
  • Received Date: 2024-05-25
  • Rev Recd Date: 2024-08-14
  • Publish Date: 2024-09-30
  • Using multiple observations such as S-band radar (SPOL) in Shijiazhuang, X-band phased array radar (XPAR) in Xiong'an, and ground-based encrypted automatic stations, detection features and evolutions of EF2 tornado at Donglü Village, Qingyuan District of Baoding City Hebei Province on 21 July 2021 are studied. The tornado occurred within the center of high dew point values and in an area characterized by a significant temperature gradient. There are convergence lines within the center of high dew point temperatures and a temperature gradient zone. From perspectives of environmental conditions such as convective available potential energy (CAPE), 0-6 km vertical wind shear, and the lifting condensation level (LCL), there is a possibility for tornado occurrence. It is evident that the tornado formed within a low-vortex precipitation cloud system, showing significant divergence at high altitudes. The subsequent storm propagation leads to multiple single-cell mergers and a supercell formation. A significant reflectivity factor core moving from southeast to northwest is observed at the top of hook echo, corresponding to the tornado location. Both SPOL and XPAR detected continuous mesocyclones on average radial velocity images, with dimensions ranging from 1.4 to 4.2 km, and rotating speeds of 10-20 m·s-1, indicating weak mesocyclones with short durations (30-35 min). During tornado development, a decrease in the lower angle detection of adjacent rotational speed pairs coincides with mesocyclone downward extension to 1.2-1.4 km and its diameter shrinking to 0.8-1 km, indicating tornado formation. Tornado storm parameters show maximum rotation speed and vorticity at low levels, promoting its intensification. Compared with XPAR storm parameters, SPOL features a larger maximum reflectivity factor (noless than 55 dBZ) and a greater distribution height (8-10 km). The consistency of SPOL and XPAR in detecting the tornado location, radial velocity, and storm diameter is compared. On the radar radial velocity image, there are pairs of positive and negative velocity values arranged symmetrically along the radial direction. The echo top of XPAR radar is approximately 6 km higher than that of SPOL radar, and the peak time of XPAR echo coincides with the storm's appearance. The tornado vortex signature (TVS) reaches its strongest period from 1536 BT to 1542 BT, extending vertically up to 2-4 km.

  • Fig. 1  Photo of tornado at Donglü Village, Qingyuan District, Baoding City, Hebei Province on 21 Jul 2021

    Fig. 1  Photo of tornado at Donglü Village, Qingyuan District, Baoding City, Hebei Province on 21 Jul 2021

    Fig. 2  hPa geopotential height (the blue contour, unit: hPa), 500 hPa temperature (the red dashed line, unit: ℃) with 850 hPa wind (the barb) (a) and pressure (the blue contour, unit: hPa) with wind (the barb) at the surface(b) at 0800 BT 21 Jul 2021

    Fig. 2  hPa geopotential height (the blue contour, unit: hPa), 500 hPa temperature (the red dashed line, unit: ℃) with 850 hPa wind (the barb) (a) and pressure (the blue contour, unit: hPa) with wind (the barb) at the surface(b) at 0800 BT 21 Jul 2021

    Fig. 3  Time-height section of physical elements at Qingyuan Station from 0800 BT 21 Jul to 0800 BT 22 Jul in 2021 (the shaded denotes specific humidity, the curve denotes vertical velocity(unit: Pa·s-1) and the barb denotes wind)

    Fig. 3  Time-height section of physical elements at Qingyuan Station from 0800 BT 21 Jul to 0800 BT 22 Jul in 2021 (the shaded denotes specific humidity, the curve denotes vertical velocity(unit: Pa·s-1) and the barb denotes wind)

    Fig. 4  Hook shaped echoes over Donglü Village, Qingyuan at 0.5° elevtion of Shijiazhuang SPOL on 21 Jul 2021

    Fig. 4  Hook shaped echoes over Donglü Village, Qingyuan at 0.5° elevtion of Shijiazhuang SPOL on 21 Jul 2021

    Fig. 5  Reflectivity factor and radial velocity of SPOL at 1548 BT 21 Jul 2021

    Fig. 5  Reflectivity factor and radial velocity of SPOL at 1548 BT 21 Jul 2021

    Fig. 6  Comparison of combined reflectivity factor and radial velocity of SPOL at 1548 BT and XPAR at 1544 BT on 21 Jul 2021(a)combined reflectivity factor of SPOL, (b)combined reflectivity factor of XPAR, (c)radial velocity at 0.5° elevation of SPOL, (d)radial velocity at 3.0° elevation of XPAR

    Fig. 6  Comparison of combined reflectivity factor and radial velocity of SPOL at 1548 BT and XPAR at 1544 BT on 21 Jul 2021(a)combined reflectivity factor of SPOL, (b)combined reflectivity factor of XPAR, (c)radial velocity at 0.5° elevation of SPOL, (d)radial velocity at 3.0° elevation of XPAR

    Fig. 7  Radial velocity of XPAR at 155130 BT 21 Jul 2021

    Fig. 7  Radial velocity of XPAR at 155130 BT 21 Jul 2021

    Fig. 8  Tornado storm parameters of SPOL and XPAR from 1530 BT to 1600 BT on 21 Jul 2021(a)maximum reflectivity factor, (b)height of maximum reflectivity factor, (c)vertical integrated liquid water content, (d)echo top height

    Fig. 8  Tornado storm parameters of SPOL and XPAR from 1530 BT to 1600 BT on 21 Jul 2021(a)maximum reflectivity factor, (b)height of maximum reflectivity factor, (c)vertical integrated liquid water content, (d)echo top height

    Fig. 9  Maximum positive and negative velocities of mesocyclone with different elevation angles of SPOL and XPAR from 1530 BT to 1600 BT on 21 Jul 2021

    Fig. 9  Maximum positive and negative velocities of mesocyclone with different elevation angles of SPOL and XPAR from 1530 BT to 1600 BT on 21 Jul 2021

    Fig. 10  Low elevation rotation velocity and the maximum vorticity of mesocyclone from SPOL and XPAR on 21 Jul 2021

    Fig. 10  Low elevation rotation velocity and the maximum vorticity of mesocyclone from SPOL and XPAR on 21 Jul 2021

    Fig. 11  Mesocyclone(a) and TVS parameters(b) of XPAR on 21 Jul 2021

    Fig. 11  Mesocyclone(a) and TVS parameters(b) of XPAR on 21 Jul 2021

    Table  1  Statistical table of characteristic parameters of mesocyclone

    仰角/(°) 旋转速度/(m·s-1) 涡度/s-1 直径/km
    XPAR SPOL XPAR SPOL XPAR SPOL XPAR SPOL
    0.0 0.5 12.8 11.0 12.4 10.4 4.8 4.7
    1.5 1.5 13.2 11.1 13.0 9.1 4.9 5.1
    3.0 2.4 13.8 8.8 12.0 8.0 5.3 4.6
    4.5 3.4 13.6 7.1 12.2 9.3 5.3 3.8
    6.0 4.3 13.6 8.3 10.5 8.5 6.1 3.6
    7.5 6.0 12.5 5.8 11.6 3.8 5.2 5.8
    DownLoad: Download CSV

    Table  1  Statistical table of characteristic parameters of mesocyclone

    仰角/(°) 旋转速度/(m·s-1) 涡度/s-1 直径/km
    XPAR SPOL XPAR SPOL XPAR SPOL XPAR SPOL
    0.0 0.5 12.8 11.0 12.4 10.4 4.8 4.7
    1.5 1.5 13.2 11.1 13.0 9.1 4.9 5.1
    3.0 2.4 13.8 8.8 12.0 8.0 5.3 4.6
    4.5 3.4 13.6 7.1 12.2 9.3 5.3 3.8
    6.0 4.3 13.6 8.3 10.5 8.5 6.1 3.6
    7.5 6.0 12.5 5.8 11.6 3.8 5.2 5.8
    DownLoad: Download CSV
  • [1]
    Yu X D. Principle and Operational Application of Doppler Weather Radar. Beijing: China Meteorological Press, 2006.
    [2]
    Feng J W, Min J Z, Zhuang X R. The spatial and temporal distribution of Chinese tornados and their characteristics analysis of environmental physical variations. J Trop Meteor, 2017, 33(4): 530-539.
    [3]
    Bai H, Yuan C, Pan X, et al. Environmental characteristics of extratropical cyclone tornadoes in Liaoning. J Appl Meteor Sci, 2023, 34(1): 104-116. doi:  10.11898/1001-7313.20230109
    [4]
    Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205
    [5]
    Yu X D. Thunderstorm and Strong Convection Prediction. Beijing: China Meteorological Press, 2020.
    [6]
    Johns R H, Doswell C A Ⅲ. Severe local storms forecasting. Wea Forecasting, 1992, 7(4): 588-612. doi:  10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
    [7]
    Davies-Jones R, Trapp R J, Bluestein H B. Tornadoes and tornadic storms. Meteor Monogr, 2001, 28: 167-221.
    [8]
    Moller A R. Severe Local Storms Forecasting//Severe Convective Storms. Boston, MA: American Meteorological Society, 2001: 433-480.
    [9]
    Goodnight J S, Chehak D A, Trapp R J. Quantification of QLCS tornado genesis associated characteristics, and environments across a large sample. Wea Forecasting, 2022, 37 (11): 2087-2105. doi:  10.1175/WAF-D-22-0016.1
    [10]
    Wilson J W, Reum D. The flare echo: Reflectivity and velocity signature. J Atmos Oceanic Technol, 1988, 5(2): 197-205. doi:  10.1175/1520-0426(1988)005<0197:TFERAV>2.0.CO;2
    [11]
    Wilson J W, Roberts R D. Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon Wea Rev, 2006, 134(1): 23-47. doi:  10.1175/MWR3069.1
    [12]
    Davies-Jones R. A review of supercell and tornado dynamics. Atmos Res, 2015, 158: 274-291.
    [13]
    Fischer J, Dahl J M L, Coffer B E, et al. Supercell tornadogenesis: Recent progress in our state of understanding. Bull Amer Meteor Soc, 2024, 105(7): E1084-E1097. doi:  10.1175/BAMS-D-23-0031.1
    [14]
    Coffer B E, Parker M, Peters J, et al. Supercell low-level mesocyclones: Origins of inflow and vorticity. Mon Wea Rev, 2023, 151(9): 2205-2232. doi:  10.1175/MWR-D-22-0269.1
    [15]
    Zheng Y Y, Zhu H F, Fang X, et al. Characteristic analysis and early-warning of tornado supercell storm. Plateau Meteor, 2009, 28(3): 617-625.
    [16]
    Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [17]
    Wang N, Wang T T, Zhang S, et al. Observation of a tornado in the birculation background of Northeast bold vortex. J Appl Meteor Sci, 2014, 25(4): 463-469. doi:  10.3969/j.issn.1001-7313.2014.04.009
    [18]
    Yang W, Fang Y, Jiang S, et al. Characteristics of the waterspout in East Dongting Lake on 13 August 2017. J Appl Meteor Sci, 2020, 31(3): 328-338. doi:  10.11898/1001-7313.20200307
    [19]
    Parker M D. Composite VORTEX2 supercell environments from near-storm soundings. Mon Wea Rev, 2014, 142(2): 508-529. doi:  10.1175/MWR-D-13-00167.1
    [20]
    Coffer B E, Parker M D, Thompson R L, et al. Using near-ground storm relative helicity in supercell tornado forecasting. Wea Forecasting, 2019, 34(5): 1417-1435. doi:  10.1175/WAF-D-19-0115.1
    [21]
    Coffer B E, Taszarek M, Parker M D. Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Wea Forecasting, 2020, 35(6): 2621-2638. doi:  10.1175/WAF-D-20-0153.1
    [22]
    Nixon C J, Allen J T. Distinguishing between hodographs of severe hail and tornadoes. Wea Forecasting, 2022, 37(10): 1761-1782. doi:  10.1175/WAF-D-21-0136.1
    [23]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [24]
    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318.
    [25]
    He C F, Yao X P, Hu C L, et al. Analyses on a tornado event in front of a typhoon. J Appl Meteor Sci, 2006, 17(3): 370-375. doi:  10.3969/j.issn.1001-7313.2006.03.015
    [26]
    Guo F Y, Diao X G, Chu Y J, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693. doi:  10.11898/1001-7313.20230604
    [27]
    Browning K A. Cellular structures of convective storms. Metero Mag, 1962, 91: 341-350.
    [28]
    Browning K A. The growth of large hail within a steady updraught. Q J R Meteor Soc, 1963, 89(382): 490-506. doi:  10.1002/qj.49708938206
    [29]
    Browning K A. Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J Atmos Sci, 1964, 21(6): 634-639. doi:  10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2
    [30]
    Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003
    [31]
    Wang C, Wu C, Liu L P. Data quality analysis and control method of X-band dual polarization radar. Plateau Meteor, 2019, 38(3): 636-649.
    [32]
    Chen Q, Ke H, Lai S J, et al. Comparative analysis of echo data between X-band phased array radar and S-band mechanical radar in Fuzhou Area. Straits Sci, 2022(12): 7-12. doi:  10.3969/j.issn.1673-8683.2022.12.003
    [33]
    Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi:  10.11898/1001-7313.20220206
    [34]
    Zhang Y Q, Zhang W, Zheng H, et al. Application analysis of S-POL-XPAR joint observation in local short-time heavy precipitation processes in Xiamen. Meteor Environ Sci, 2023, 46(4): 85-94.
    [35]
    Su Y Y, Liu L P. Comparison of mesocyclone identification results between S-band dual polarization radar and X-band phased array weather radar. Meteor Mon, 2022, 48(2): 229-244.
    [36]
    Zheng Y G, Zhu W J, Yao D, et al. Wind speed scales and rating of the intensity of the 23 June 2016 tornado in Funing County, Jiangsu Province. Meteor Mon, 2016, 42(11): 1289-1303. doi:  10.7519/j.issn.1000-0526.2016.11.001
    [37]
    Zhang G C. Analysis and Forecast of Severe Convective Weather. Beijing: China Meteorological Press, 2011.
    [38]
    Lee R R, White A. Improvement of the WSR-88D mesocyclone algorithm. Wea Forecasting, 1998, 13(2): 341-351. doi:  10.1175/1520-0434(1998)013<0341:IOTWMA>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(22)  / Tables(2)

    Article views (104) PDF downloads(38) Cited by()
    • Received : 2024-05-25
    • Accepted : 2024-08-14
    • Published : 2024-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint