[1]
|
Feng Z Z, Hu E Z, Wang X K, et al.Ground-level O 3 pollution and its impacts on food crops in China:A review. Environ Pollut, 2015, 199:42-48. doi: 10.1016/j.envpol.2015.01.016
|
[2]
|
Xu X B. Observational study advances of haze and photochemical pollution in China. J Appl Meteor Sci, 2016, 27(5): 604-619. doi: 10.11898/1001-7313.20160509
|
[3]
|
Ding G A, Zheng X D, Ma J Z, et al. Review of atmospheric chemistry and environment research work in recent 30 years-In commemoration of the 50 anniversaries of CAMS establishment. J Appl Meteor Sci, 2006, 17(6): 796-814. http://qikan.camscma.cn/article/id/200606128
|
[4]
|
IPCC. Summary for Policymakers//Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2021.
|
[5]
|
Tarasick D, Galbally I E, Cooper O R, et al. Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem Sci Anth, 2019, 7(1). DOI: 10.1525/elementa.376.
|
[6]
|
|
[7]
|
Zhang Y H, Zheng J Y. Blue Book of China's Atmospheric Ozone Pollution Prevention and Control(2020). Ozone Pollution Control Committee of the Chinese Society for Environmental Science, 2020.
|
[8]
|
Wang T, Xue L K, Feng Z Z, et al. Ground-level ozone pollution in China: A synthesis of recent findings on influencing factors and impacts. Environ Res Lett, 2022, 17(6). DOI: 10.1088/1748-9326/ac69fe.
|
[9]
|
Feng Z Z, De Marco A, Anav A, et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int, 2019, 131. DOI: 10.1016/j.envint.2019.104966.
|
[10]
|
Hua Q Y, Meng X, Gong J C, et al. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. Fundam Res, 2024. DOI: 10.1016/j.fmre.2024.02.016.
|
[11]
|
|
[12]
|
Chen S, Zheng X D, Lin W L, et al. Observational study on the ground-based UVI at Dangxiong of Tibet. J Appl Meteor Sci, 2015, 26(4): 482-491. doi: 10.11898/1001-7313.20150410
|
[13]
|
Lin W L, Zhu T, Song Y, et al. Photolysis of surface O 3 and production potential of OH radicals in the atmosphere over the Tibetan Plateau. J Geophys Res, 2008, 113(D2). DOI: 10.1029/2007JD008831.
|
[14]
|
Xu X B, Lin W L, Xu W Y, et al. Long-term changes of regional ozone in China: Implications for human health and ecosystem impacts. Elem Sci Anth, 2020, 8(13): 1-27.
|
[15]
|
|
[16]
|
Guo L, Li X H, Liu Y T. Impacts of urbanization on extreme climate events in Sichuan-Chongqing Region. J Appl Meteor Sci, 2023, 34(5): 574-585. doi: 10.11898/1001-7313.20230506
|
[17]
|
Guo S Z, Wang Y R, Zhang T T, et al. Volatile organic compounds in urban Lhasa: Variations, sources, and potential risks. Front Environ Sci, 2022, 10. DOI: 10.3389/fenvs.2022.941100.
|
[18]
|
Ran L, Lin W L, Deji Y Z, et al. Surface gas pollutants in Lhasa, a highland city of Tibet-current levels and pollution implications. Atmos Chem Phys, 2014, 14(19): 10721-10730. doi: 10.5194/acp-14-10721-2014
|
[19]
|
Ye C X, Guo S Z, Lin W L, et al. Measurement report: Source apportionment and environmental impacts of volatile organic compounds(VOCs) in Lhasa, a highland city in China. Atmos Chem Phys, 2023, 23(18): 10383-10397. doi: 10.5194/acp-23-10383-2023
|
[20]
|
Xu X B. Recent advances in studies of ozone pollution and impacts in China: A short review. Curr Opin Environ Sci Health, 2021, 19. DOI: 10.1016/j.coesh.2020.100225.
|
[21]
|
Lefohn A S, Malley C S, Smith L, et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem Sci Anth, 2018, 6. DOI: 10.1525/elementa.279.
|
[22]
|
Lefohn A S, Malley C S, Simon H, et al. Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmos Environ, 2017, 152: 123-145. doi: 10.1016/j.atmosenv.2016.12.025
|
[23]
|
Lefohn A S, Laurence J A, Kohut R J. A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops. Atmos Environ, 1988, 22(6): 1229-1240. doi: 10.1016/0004-6981(88)90353-8
|
[24]
|
Liu N W, Ma J Z. Seasonal relationships between tropospheric ozone and its precursors over East Asia. J Appl Meteor Sci, 2017, 28(4): 427-435. doi: 10.11898/1001-7313.20170404
|
[25]
|
Xu W Y, Lin W L, Xu X B, et al. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China-Part 1: Overall trends and characteristics. Atmos Chem Phys, 2016, 16(10): 6191-6205. doi: 10.5194/acp-16-6191-2016
|
[26]
|
Zhao S P, Yu Y, Yin D Y, et al. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ Int, 2016, 86: 92-106. doi: 10.1016/j.envint.2015.11.003
|
[27]
|
Yin X F, de Foy B, Wu K P, et al. Gaseous and particulate pollutants in Lhasa, Tibet during 2013-2017: Spatial variability, temporal variations and implications. Environ Pollut, 2019, 253: 68-77. doi: 10.1016/j.envpol.2019.06.113
|
[28]
|
Schultz M G, Schröder S, Lyapina O, et al. Tropospheric ozone assessment report: Database and metrics data of global surface ozone observations. Elementa: Sci Anthrop, 2017, 5: 58. DOI: 10.1525/elementa.244.
|
[29]
|
Lin W L, Xu X B, Zheng X D, et al. Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau. J Environ Sci, 2015, 31: 133-145. doi: 10.1016/j.jes.2014.10.022
|
[30]
|
Li Z, Lin W L, Xu X B, et al. Characteristics of the surface ozone at Shangri-la regional atmospheric background station. Resour Environ Yangtze Basin, 2015, 24(8): 1412-1417.
|
[31]
|
Chen Y, Lin W L, Xu X B, et al. Surface ozone in southeast Tibet: Variations and implications of tropospheric ozone sink over a highland. Environ Chem, 2022, 19(5): 328-341. doi: 10.1071/EN22015
|
[32]
|
Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210
|
[33]
|
Wen J Q, Wang G L, Zhou R R, et al. Vertical structure characteristics of precipitation in Medog Area of southeastern Tibet during the monsoon period. J Appl Meteor Sci, 2023, 34(5): 562-573. doi: 10.11898/1001-7313.20230505
|
[34]
|
Ellingsen K, Gauss M, Van Dingenen R, et al. Global ozone and air quality: A multi-model assessment of risks to human health and crops. Atmos Chem Phys Discuss, 2008, 8(1): 2163-2223.
|
[35]
|
Chen S Y, Wang H C, Lu K D, et al. The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmos Environ, 2020, 242. DOI: 10.1016/j.atmosenv.2020.117801.
|
[36]
|
Huang H H, Li L. A synchronous variation process of Tibetan Plateau vortex and southwest vortex. J Appl Meteor Sci, 2023, 34(4): 451-462. doi: 10.11898/1001-7313.20230406
|
[37]
|
UNECE. Convention on Long-range Trans-boundary Air Pollution(2010) Mapping Critical Levels for Vegetation. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops. Bangor, UK: United Nations Economic Commission for Europe, 2010.
|
[38]
|
Lin J L, Li Y, Liu L S. A heavy precipitation process over the Tibetan Plateau under the joint effects of a tropical cyclone and vortex. J Appl Meteor Sci, 2023, 34(2): 166-178. doi: 10.11898/1001-7313.20230204
|