Differences in Ozone Distribution Patterns of East and West Parts in the North of China Based on Satellite Data
-
Abstract
The focus of this study is to better understand the characteristics and differences in total ozone and ozone vertical distribution patterns of east and west parts in the north of China. It is acknowledged that ozone vertical distribution feature in China not only has common behaviors, which is in line with many other regions of the same latitudes, but also has particular characteristics. It is worth noting that during the winter and spring, the monthly-mean maps of total ozone display a prominent maximum off the Asian east coast, centered at about 50°-70°N, 120°-150°E, caused by the vertically propagation of the quasi-stationary planetary waves. Affected by this high ozone concentration region, the column total ozone in the north of China displays substantial deviations from zonal symmetry, and ozone vertical distribution pattern in the east part is remarkably different from that of the west.The Stratospheric Aerosol and Gas Experiment Ⅱ (SAGE Ⅱ)(version 6.2), Halogen Occultation Experiment (HALOE)(version 19), and Total Ozone Mapping Spectrometer (TOMS)(version 8) satellite data sets from March 1997 to February 2002 are used to derive seasonally averaged ozone profiles and total ozone. Seasonal, latitudinal and comparative studies of total ozone and ozone vertical distributions are performed for the regions covering latitude bands of 45°-55°N and 35°-45°N, and longitude ranges of 75°-105°E (west part) and 105°-135°E (east part). And the standard t test method is used to determine the significance of differences in seasonal average total column ozone, 16-30km column ozone, and column ozone below 16 km between the east and the west part.During winter, spring and autumn, the total ozone values of the east part are considerably higher than those of the west. At the altitudes of ozone maximum density and below, seasonal average ozone amounts in the east part are obviously higher than those of the west, especially during winter and spring. But at the altitudes above 30 km, there are small differences between the east and the west.During winter and autumn, the east-west total ozone differences decrease with the decreasing latitude.But during spring, the east-west total ozone difference over the 35°-45°N band is nearly the same as that of the 45°-55°N band. During the summertime, the east-west total ozone difference is small in the latitude band of 50°±5°N, and the ozone profile of east region is very similar to that of the west. But for the latitude band of 35°-45°N, there are still significant ozone distribution differences between the east and the west:The east-west total ozone difference becomes as large as 20.6 DU, and the derived 0-16 km total column ozone difference is 12.8 DU. It suggests that in the latitude band of 35°-45°N, the east-west ozone differences mainly exist in the lowermost stratosphere and troposphere during the summertime.
-
-