Statistical Characteristics of Clutter and Improvements of Ground Clutter Identification Technique with Doppler Weather Radar
-
Abstract
Radar echoes caused by non-meteorological targets significantly affect radar data quality, and contaminated bins by ground clutter should be identified and eliminated before precipitation can be quantitatively estimated from radar data. An automatic algorithm for ground clutter detection is developed and examined. The algorithm is based on fuzzy logic, using volume scanning radar raw data. It uses some statistics to highlight clutter characteristics, such as shallow vertical extent, high spatial variability, and low radial velocities. A value that quantifies the possibility of each bin being affected by clutter is derived, and then certain impacts can be eliminated when this factor exceeds acertain threshold. The ground clutter points in sample data are distinguished empirically. In order to reduce the identified inaccuracy of the precipitation echoes with least infections on the ground clutter identified veracity, the optimal membership functions are determined by analyzing statistic the precipitation and ground clutter with the critical success index (CSI) based on the standard ground clutter and precipitation data. CSI is obtained based on the identified veracity through all samples includes clutters and precipitation of each function performs. The performance of this algorithm (MOP) is compared against that of the original one such as China currently available membership function (MCH) and American membership function (MAM) by testing with statistical analysis, individual cases analysis, and inaccurate result analysis methods. Satisfactory results are obtained from an exhaustive evaluation of this algorithm, especially in the cases where anomalous propagation plays an important role. It turns out six characteristic parameters including TDBZ, GDBZ, SPIN, MDVE, MDSW, SDVE can retrieve precipitation echo and clutters well. Radial velocity used in algorithm shows it is good for echo classifying, it will reduce the possibility of identifying the precipitation echo to clutter. The membership functions got from CSI show better result than the original one, especially in distinguishing the precipitation echo from clutter. The algorithm performs well, but the result isn't hundred-percent correct yet. Through individual case analysis, it's found out the cause for the wrong classifying is echo intensity's horizontal texture and velocity's range unfold which is unavoidable, but it proves velocity data can improve the echo classifying result too. Radar data quality control is a complicated question, just using radar data is not enough to reach a perfect outcome. Satellite or automatic weather station data can be imported to make the result more authentic. And the most effective work on radar data quality control is to combine the manual work to the algorithm, through which all kinds of data problems recognized by auto algorithm can be solved. Radar echo classifying is still a key point in radar data quality control, radar data quality will not be totally exact until the radar echo characteristic is acknowledged and the right way to work it out is chosen, and that will have great effect on the application of radar data.
-
-