Wang Fei, Dong Wansheng, Zhang Yijun, et al. Case study of big particles effect on lightning initiation in clouds using model. J Appl Meteor Sci, 2009, 20(5): 564-570.
Citation: Wang Fei, Dong Wansheng, Zhang Yijun, et al. Case study of big particles effect on lightning initiation in clouds using model. J Appl Meteor Sci, 2009, 20(5): 564-570.

Case Study of Big Particles Effect on Lightning Initiation in Clouds Using Model

  • Received Date: 2008-10-06
  • Rev Recd Date: 2009-06-23
  • Publish Date: 2009-10-31
  • A thunderstorm process in Beijing on 20 September 2008 is simulated using a 3-D charging-dischargingcloud model. The effects of big particles consisting of graupels, ices, hails and raindrops on lightning initiation are investigated.Temporal and spatial analysis on the model results, including the mass concentration and the charging velocity, shows that graupels and ices are the most important particles that affect theinitiation of most lightning.Because lightning always initiate in the region with mass distribution of graupels and ices.The charging velocities of graupels and ices also reach large values there.From the analysisof time series, those large charging velocities of graupels and ices appear when lightning initiate intensively.Hails may also be an important factor effecting the lightning initiation except for the early stage oflightning activity.The region of lightning initiation correlates partially with the mass contribution of hails.The period when the charging velocities of hails reach their large values chimes with the lightning activity.But hails meet their large values below the height of lightning initiation.At the early stage of lightning activity, the mass concentration of hails is very small.Raindrops locates beneath the region of lightning initiation from beginning to end.Their charging velocities become prominent after the end of lightning activity.So it is impossible for raindrops to affect the lightning initiation directly.In many cases, it can be the signal of lightning warning that some kind of strong echo reaches athreshold height.Through the effect of particles on lightning initiation above, it can be concluded that thestrong echo should be caused by graupels or hails.When graupels (hails) are brought to the upper level above the threshold height by updraft, graupels (hails) mixed with ices adequately and the strong chargingprocess occurs among them.The first lightning will initiate soon after that.
  • Fig. 1  The 40 dBz echo top evolvement (a) and the lightning frequency observing by SAFIR3000 (b) in Beijing from 17:00 6 Sep 2008 to 02:00 7 Sep 2008

    Fig. 2  Profile of space charge density distribution at the 12nd minute (unit :C/m3)

    Fig. 3  The maximum specific mass density (unit : g/kg) evolvement of rain drops, ice crystals, graupels and hails at every model levels and the height change of lightning initializations

    Fig. 4  The height distribution of charge density change rate of rain drops, ice crystals, graupels and hails at every grid

    Fig. 5  The evolvement of charge density change rate of rain drops, ice crystals, graupels and hails at every grid

  • [1]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6): 829-834. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=200606130&flag=1
    [2]
    Gremillion M S, Orville R E.Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida :A study of lightning initiation signatures as indicated by the WSR-88D.Wea Forecasting, 1999, 14:640-649. doi:  10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2
    [3]
    Hondl K D, Eilts M D.Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning.Mon Wea Rev, 1994, 122:1818-1836. doi:  10.1175/1520-0493(1994)122<1818:DRSODT>2.0.CO;2
    [4]
    Brandon R Vincent, Lawrence D Carey, Douglas Schneider, et al.Using WS R-88D reflectivity for the prediction of cloudto-ground lightning : A central north Carolina study.National Weather Digest, 2003, 27: 35-44. http://cstar.cestm.albany.edu/nrow/nrow5/NROW5_pres/NROW_lightning_schneider.ppt
    [5]
    Maribel Martinez. The Relationship between Radar Reflectivity and Lightning Activity at Initial Stages of Convective Storms. American Meteorological Society, 82nd Annual Meeting, First Annual Student Conference, Orlando, Florida, 2002.
    [6]
    王飞, 张义军, 赵均壮, 等.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报, 2008, 19(2) : 153-160. http://qk.cams.cma.gov.cn/jams/ch/reader/view_abstract.aspx?file_no=20080228&flag=1
    [7]
    Chiu Chinshan.Numerical study of cloud electrification in an axisymmetric, time-dependent cloud model.J Geohpys Res, 1978, 83: 5025-5049. doi:  10.1029/JC083iC10p05025
    [8]
    Takahashi T.Tunderstorm electrification-a numerical study.J Atmos Sci, 1984, 41: 2541-2558. doi:  10.1175/1520-0469(1984)041<2541:TENS>2.0.CO;2
    [9]
    Rawlins F.A numerical study of thunderstorm electrification using a three dimensional model incorporating the ice phase.Q J Roy Meteor Soc, 1982, 108:779-800. doi:  10.1002/(ISSN)1477-870X
    [10]
    Helsdon J H, Wu Jr G, Farley R D.An intracloud lightning parameterization scheme for a storm electrification model.J Geophys Res, 1992, 97: 5865-5884. doi:  10.1029/92JD00077
    [11]
    Ziegler C L, Macgorman D R.Observed lightning morphology relative to modeled space charge an electric field distributions in a tornadic storm.J Atmos Sci, 1994, 51:833-851. doi:  10.1175/1520-0469(1994)051<0833:OLMRTM>2.0.CO;2
    [12]
    孙安平, 言穆弘, 张义军, 等.三维强风暴动力———电耦合数值模拟研究Ⅰ :模式及其电过程参数化方案.气象学报, 2002, 60(6): 722-731. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200206009.htm
    [13]
    孙安平, 言穆弘, 张义军, 等.三维强风暴动力———电耦合数值模拟研究Ⅱ :电结构形成机制.气象学报, 2002, 60(6): 732-739. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200206010.htm
    [14]
    谭永波.闪电放电与雷暴云电荷、电位分布相互关系的数值模拟.合肥:中国科学技术大学, 2006.
    [15]
    Ziegler C L, Macgorman D R, Dye J E, et al. A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm.J Geophy Res, 1991, 96(D7):12833-12855. doi:  10.1029/91JD01246
    [16]
    Gardiner B, Lamb D, Pitter R L, et al. Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm.J Geophys Res, 1985, 90(D4):6079-6086. doi:  10.1029/JD090iD04p06079
    [17]
    Hallett J, Saunders C P R. Charge separation associated with secondary ice crystal production. J Atmos Sci, 1979, 36(11): 2230-2235. doi:  10.1175/1520-0469(1979)036<2230:CSAWSI>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(5)

    Article views (7847) PDF downloads(12844) Cited by()
    • Received : 2008-10-06
    • Accepted : 2009-06-23
    • Published : 2009-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint