Ying Ming, Wan Rijin. The annual frequency prediction of tropical cyclones affecting China. J Appl Meteor Sci, 2011, 22(1): 66-76.
Citation: Ying Ming, Wan Rijin. The annual frequency prediction of tropical cyclones affecting China. J Appl Meteor Sci, 2011, 22(1): 66-76.

The Annual Frequency Prediction of Tropical Cyclones Affecting China

  • Received Date: 2010-01-19
  • Rev Recd Date: 2010-11-24
  • Publish Date: 2011-02-28
  • Seasonal prediction schemes are developed for the annual frequency of tropical cyclones (TCs) affecting China, which are more practicable than predicting the genesis frequency for disaster mitigation. The frequencies of TCs affecting the whole China, East China and South China are identified by using the China Meteorological Administration TC-induced wind and precipitation data under one of the three criteria: The storm precipitation heavier than 50 mm has been observed at more than one station in the region; the sustained wind severer than Beaufort scale 7 or wind gusts larger than Beaufort scale 8 has been observed at more than one station in the region; the storm precipitation heavier than 30 mm, and either the sustained wind severer than Beaufort scale 6 or wind gusts larger than Beaufort scale 7 has been observed at more than one station in the region. Seasonal prediction schemes are then developed for these TC frequencies (TCFs) according to their lag correlations with the sea surface temperature (SST) and atmospheric variables during the period of 1961—2000. The NOAA ER SST and the NCEP/NCAR reanalysis data, including sea level pressure, geopotential height at 200, 500 hPa and 850 hPa, and both the zonal and meridional components of wind vectors at 200, 500 hPa and 850 hPa, are used to derive the predictors. For better representing the variation of the circulation systems in three dimensions, the predictor series are constructed by averaging data within those adjoining significant areas of correlation at various levels in each month. For the frequencies of TCs affecting the South and East China, respectively, analyses on the predictors suggest that their predictors of previous autumn and winter are quite consistent with each other; however, their predictors of previous spring show more differences. For each model, the colinearity among the predictors, including data since 2001, is reduced by applying the Principal Component Analysis approach, and the optimal subset regression model is then developed based on those derived independent predictors. All prediction schemes for TCFs are validated using the data of 2001—2008 and the results indicate that all schemes show skills in predicting frequencies of TCs affecting China though they still can be further improved.
  • Fig. 1  Distribution of the 676 stations with observations more than 50 years in China Meteorological Adiministration tropical cyclone servere wind and precipitation dataset (a) and the annual number of stations (b)

    Fig. 2  Frequency of TCs (lines with markers) from 1949 to 2007 affecting China (TCFC), East China (TCFEC), and South China (TCFSC)(thick lines) with corresponding means during 1961—2000 (lines with markers), repectively, and the frequency of TCs (bars) offecting both the East China and South China

    Fig. 3  The mean geopotential heights of previous December from 1961 to 2000(contours, unit:gpm) and their lead correlations with the TCFEC (shaded with solid line means positive and that with dashed line means negative, only the correlations with confidence of 95.0%, 99.0% and 99.9% are plotted) at 200 hPa (a), 500 hPa (b) and 850 hPa (c)

    Fig. 4  Same as in Fig. 3, but for the geopotential heights of previous February (contours, unit:gpm) and their lead correlations with TCFSC (shaded)

    Fig. 5  Same as in Fig. 3, but for the SSTs (contours, unit:℃) in previous March (a), April (b) and May (c), and their leading correlations with TCFC (shaded)

    Fig. 6  The frequency of TCs affecting China and the trends of SST of the negative region over the mid-east tropical Pacific in previous April and Ma

    Fig. 7  The scheme of TC frequency prediction

    Table  1  The levels of collinearity among predictors or principal components for each TCF

    项目 TCFC TCFEC TCFSC
    4月 6月 4月 6月 4月 6月
    原始因子 822.49 388.56 3759.02 12897.80 944.50 244.06
    主成分 5.53 18.15 4.07 8.50 5.13 23.80
    DownLoad: Download CSV

    Table  2  Statistical test and hindcasts for TCF prediction models during 2001—2008

    统计量 TCFC
    (平均值:14.2;标准差:3.7)
    TCFEC
    (平均值:8.3;标准差:2.8)
    TCFSC
    (平均值:10.3;标准差:2.9)
    4月 6月 4月 6月 4月 6月
    残差的标准差 1.6~2.2 1.4~1.9 1.5~1.9 1.2~1.5 1.1~1.6 0.9~1.7
    残差正态性P 0.40~0.90 0.14~0.79 0.07~0.38 0.05~0.94 0.05~0.87 0.19~0.95
    复相关系数R 0.81~0.92 0.86~0.92 0.72~0.85 0.85~0.92 0.88~0.93 0.84~0.96
    解释方差 0.66~0.85 0.75~0.85 0.52~0.72 0.72~0.84 0.78~0.86 0.71~0.93
    平均绝对误差 2.6 1.6 2.2 2.3 2.1 2.2
    趋势一致率 5/8 6/8 4/8 4/8 5/8 4/8
    DownLoad: Download CSV
  • [1]
    Nicholls N. A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon Wea Rev, 1979, 107: 1221-1224. doi:  10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO;2
    [2]
    Nicholls N. Predictability of interannual variations of Australian seasonal tropical cyclone activity. Mon Wea Rev, 1985, 113: 1144-1149. doi:  10.1175/1520-0493(1985)113<1144:POIVOA>2.0.CO;2
    [3]
    Gray W M, Landsea C W, Mielke Jr P W, et al. Predicting Atlantic seasonal hurricane activity 6—11 months in advance. Wea Forecasting, 1992, 7: 440-455. doi:  10.1175/1520-0434(1992)007<0440:PASHAM>2.0.CO;2
    [4]
    Gray W M, Landsea C W, Mielke Jr P W, et al. Predicting Atlantic basin seasonal tropical actitity by 1 August. Wea Forecasting, 1993, 8: 73-86. doi:  10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2
    [5]
    Gray W M, Landsea C W, Mielke Jr P W, et al. Predicting Atlantic basin seasonal tropical actitity by 1 June. Wea Forecasting, 1994, 9: 103-115. doi:  10.1175/1520-0434(1994)009<0103:PABSTC>2.0.CO;2
    [6]
    Chan J C L, Shi J E, Lam C M. Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea Forecasting, 1998, 13: 997-1004. doi:  10.1175/1520-0434(1998)013<0997:SFOTCA>2.0.CO;2
    [7]
    Kwon H J, Lee W J, Won S H, et al. Statistical ensemble prediction of the tropical cyclone activity over the Western North Pacific. Geophys Res Lett, 2007, 34: L24805, doi:  10.1029/2007GL032308.
    [8]
    雷小途. 热带气旋频数预测的研究进展和业务预测水平//大气科学研究与应用 (十四). 北京: 气象出版社, 1998: 196-202.
    [9]
    吴达铭, 雷小途.华东地区热带气旋频数异常时的环流分析.应用气象学报, 1999, 10(2): 213-218. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX902.009.htm
    [10]
    雷小途.热带气旋频数的短期气候预测水平评估.应用气象学报, 2001, 12(4): 501-506. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010465&flag=1
    [11]
    雷小途, 徐一鸣.影响上海, 长江三角洲及华东地区热带气旋频数的短期气候预测.海洋学报, 2001, 20(3): 15-28. http://www.cnki.com.cn/Article/CJFDTOTAL-HUTB200103002.htm
    [12]
    蒋乐贻, 应明.华东地区热带气旋年频数异常的分析.应用气象学报, 2002, 13(1): 88-95. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020110&flag=1
    [13]
    Liu K S, Chan J C L. Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon Wea Rev, 2003, 131: 1650-1662. doi:  10.1175//2554.1
    [14]
    谢定升, 张晓晖, 梁凤仪.热带气旋的年月频数预测.海洋预报, 2000, 17(4): 60-68. doi:  10.11737/j.issn.1003-0239.2000.04.010
    [15]
    钟元, 胡波.热带气旋登陆华东的客观预报方案.热带气象学报, 2001, 17(3): 204-214. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200103001.htm
    [16]
    何敏, 龚振淞, 徐明, 等.高低层纬向风异常与西北太平洋热带气旋生成频数关系的研究.热带气象学报, 2007, 23(3): 277-283. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200703009.htm
    [17]
    王会军, 范可, 孙建奇, 等.关于西太平洋台风气候变异和预测的若干研究进展.大气科学, 2007, 31(6): 1076-1081. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200706005.htm
    [18]
    卫捷, 张庆云, 陶诗言. 2004年夏季短期气候集成预测及检验.气候与环境研究, 2005, 10(1): 19-31. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200501001.htm
    [19]
    Camargo S J, Barnston A G, Klotzbach P J, et al. Seasonal tropical cyclone forecasts. WMO Bulletin, 2007, 56(4): 297-300.
    [20]
    Saunders M A, Lea A S. Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 2005, 434: 1005-1008. doi:  10.1038/nature03454
    [21]
    邓自旺, 屠其璞, 冯俊茹, 等.我国登陆台风频数变化与太平洋海表温度场的关系.应用气象学报, 1999, 10(增刊): 55-60.
    [22]
    梁健, 林永堂, 谢定升.热带气旋频数的二次型预测模型.应用气象学报, 2007, 18(1): 58-63. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070111&flag=1
    [23]
    Bell G D, Halpert M S, Schnell R C, et al. Climate assessment for 1999. Bull Amer Meteor Soc, 2000, 81(6): 1-50. doi:  10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2
    [24]
    Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 2005, 436: 686-688. doi:  10.1038/nature03906
    [25]
    Kossin J P, Knapp K R, Vimont D J, et al. A globally consistent eanalysis of hurricane variability and trends. Geophys Res Lett, 2007, 34, L04815.
    [26]
    Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 2005, 309: 1844-1846. doi:  10.1126/science.1116448
    [27]
    Pielke Jr P A. Are there trends in hurricane destruction? Nature, 2005, 438: E11. https://www.researchgate.net/publication/7399102_Are_There_Trends_in_Hurricane_Destruction
    [28]
    Wang X, Wu L, Ren F, et al. Influence of tropical cyclone on China during 1965—2004. Adv Atmos Sci, 2008, 25(3): 417-426. doi:  10.1007/s00376-008-0417-6
    [29]
    Ren F, Wu G, Dong W, et al. Changes in tropical cyclone precipitation over China. Geophys Res Lett, 2006, 33: L20702. doi:  10.1029/2006GL027951
    [30]
    王小玲, 王咏梅, 任福民, 等.影响中国的台风频数年代际变化趋势: 1951—2004.气候变化研究进展, 2006, 2(3): 135-138. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200610004191.htm
    [31]
    杨玉华, 雷小途.我国登陆台风引起的大风分布特征的初步分析.热带气象学报, 2004, 20(6): 633-642. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200406002.htm
    [32]
    冯泾贤, 杨自植, 邓之瀛. 影响上海市及长江三角洲地区热带气旋气候规律的研究//大气科学研究与应用 (十四). 北京: 气象出版社, 1998: 36-41.
    [33]
    Reynolds R W, Rayner N A, Smith T M, et al. An improved in situ and satellite SST analysis for climate. J Climate, 2002, 15:1609-1625. doi:  10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
    [34]
    Smith T M, Reynolds R W. Extended reconstruction of global sea surface temperatures based on COADS data (1854—1997). J Climate, 2003, 16: 1495-1510. doi:  10.1175/1520-0442-16.10.1495
    [35]
    Smith T M, Reynolds R W. Improved extended reconstruction of SST (1854—1997). J Climate, 2004, 17: 2466-2477. doi:  10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
    [36]
    Kalney E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull Amer Meteor Soc, 1996, 77: 437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [37]
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 1999: 1-269.
    [38]
    Jin F F, Neelin J D, Ghil M. El Nino on the devil's staircase: Annual and subharmonic steps to chaos. Science, 1994, 264: 70-72. doi:  10.1126/science.264.5155.70
    [39]
    Jin F F, Neelin J D, Ghil M. The interaction of ENSO and the annual cycle: Subharmonic frequency-locking and ENSO aperiodicity. Physica D, 1996, 98: 442-465. doi:  10.1016/0167-2789(96)00111-X
    [40]
    Pezzulli S, Stephenson B, Hannachi A. The variability of seasonality. J Climate, 2005, 18: 71-88. doi:  10.1175/JCLI-3256.1
    [41]
    何敏, 宋文玲, 陈兴芳.厄尔尼诺和反厄尔尼诺事件与西北太平洋台风活动.热带气象学报, 1999, 15(1): 17-25. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX901.002.htm
    [42]
    Lander M A. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon Wea Rev, 1994, 122: 636-651. doi:  10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
    [43]
    Wang B, Chan J. How strong ENSO events affect tropical storm activity over the western North Pacific. J Climate, 2002, 15: 1643-1658. doi:  10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
    [44]
    Gill A E. Some simple solutions for heat-induced tropical circulation. Quart J R Met Soc, 1980, 106: 447-462. doi:  10.1002/(ISSN)1477-870X
    [45]
    谭桂容, 陈海山, 孙照勃, 等. 2008年1月中国低温与北大西洋涛动和平流层异常活动的联系.大气科学, 2010, 34(1): 175-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201001016.htm
    [46]
    南素兰, 李建平.春季南半球环状模与长江流域夏季降水的关系:I基本事实.气象学报, 2005, 63(6): 827-846. http://cdmd.cnki.com.cn/Article/CDMD-10730-2006088473.htm
    [47]
    Royston P. An extension of Shapiro and Wilk's W test for normality to large samples. Applied Statistics, 1982, 31: 115-124. doi:  10.2307/2347973
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(2)

    Article views (4743) PDF downloads(1834) Cited by()
    • Received : 2010-01-19
    • Accepted : 2010-11-24
    • Published : 2011-02-28

    /

    DownLoad:  Full-Size Img  PowerPoint