Zhong Shuixin, Wang Donghai, Zhang Renhe, et al. Vertical structure of convective cloud in a cold vortex over Northeastern China using cloudsat data. J Appl Meteor Sci, 2011, 22(3): 257-264.
Citation: Zhong Shuixin, Wang Donghai, Zhang Renhe, et al. Vertical structure of convective cloud in a cold vortex over Northeastern China using cloudsat data. J Appl Meteor Sci, 2011, 22(3): 257-264.

Vertical Structure of Convective Cloud in a Cold Vortex over Northeastern China Using CloudSat Data

  • Received Date: 2010-06-21
  • Rev Recd Date: 2011-02-16
  • Publish Date: 2011-06-30
  • Cold vortex (or cold low, also called cut-off low), characterized by a cold core and low pressure center over 500 hPa level, is one of the most frequent weather systems over Northeast China. It is often accompanied by strong convective incident, and can bring a wide range of continuous rainfall. However, most of the past researches mainly focus on the environmental conditions and large scale of the cold vortex systems. There is little analysis on meso-scale structure of the convective systems of cold vortex, especially using satellite and radar data, and the understanding on the vertical structure of the meso-scale convective systems is limited. CloudSat data, NCEP reanalysis data and visible light satellite data has been used to analyze the convective rain bands and meso-scale cloud structure of different stages of a cold vortex over Northeast China during 20—24 July 2006.The results show that at the beginning of development stage, the structure of the warm front is characterized with isolated and deep convective systems. At the development and matured stage, the intensity of radar echo is weaker than its development stage, and the convective systems are shallow. The echo top of occlusion under the cold vortex system presents some special characteristics: In the southeast of occlusion, the echo area is driven by the cold-dry air; in the middle area of occlusion is the main convective system and in the northwest area echo is caused by the lifting effect of warm front confront the cold front. There is delamination between ice water and liquid water at the tail of the occlusion front. The height of incursion layer of dry-cold air is about 5 km, above which is the weak echo consisting of ice water, and below the incursion layer is the echo with liquid water. At the mature stage of the cold vortex, the convective systems are located mainly outside the cold vortex in the form of isolated convective systems. Convective systems which contains plenty of ice water content are mainly located in the north of the cold vortex, while liquid water content exists below the 0℃ layer of the cold vortex center.
  • Fig. 1  500 hPa (a) and 950 hPa (b) geopotential height (solid line, unit: gpm), potential temperature (grey) and wind (vector) fields at 06:00 20 July 2006

    (the long dashed line represents CloudSat section of granule 1206 at 03:50 20 July 2006)

    Fig. 2  FY-2C visible light cloud image at 04:00 20 July 2006

    (the solid line represents CloudSat granule)

    Fig. 3  CloudSat of granule 1206 cloud profiling at 04:53 20 July 2006 (a) radar reflectivity (grey) and equivalent potential temperature (contour, unit: K), (b) ice water content (grey), liquid water content (black area, no less than 100 mg·m-3) and temperature (contour, unit:℃)

    Fig. 4  Same as in Fig. 1, but at 06:00 22 July 2006

    Fig. 5  Same as in Fig. 2, but at 04:00 22 July 2006

    Fig. 6  Same as in Fig. 3, but for the granule 1235 of CloudSat at 04:41 22 July 2006

    Fig. 7  Same as in Fig. 1, but at 18:00 22 July 2006

    Fig. 8  Same as in Fig. 3, but for the granule 1243 of CloudSat at 18:14 22 July 2006

    Table  1  CloudSat data code and its relevant product

    产品编码 产品名称
    1B-CPR, 1B-CPR-FL 雷达散射剖面
    2B-GEOPROF 云的几何剖面
    2B-CLDCLASS 云的分类
    2B-CWC-RO 组合 (液态、固态) 水含量 (单雷达)
    2B-CWC-RVOD 组合水含量和可见光光学厚度
    2B-TAU 云光学厚度
    2B-FLXHR 通量和加热率
    2B-CLDCLASS-LIDAR 激光雷达云几何剖面
    DownLoad: Download CSV
  • [1]
    陶诗言.中国之暴雨.北京:科学出版社, 1980:1-225.
    赵思雄, 刘苏红, 刘名扬.夏季北京冷涡强对流天气的中尺度分析.中国科学院大气物理所集刊 (第9号), 北京:科学出版社, 1980.
    王东海, 钟水新, 刘英, 等.东北暴雨的研究.地球科学进展, 2007, 22(6): 549-560. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200706001.htm
    陈力强, 陈受钧, 周小珊, 等.东北冷涡诱发的一次MCS结构特征数值模拟.气象学报, 2005, 63(2):173-183. doi:  10.11676/qxxb2005.017
    乔枫雪, 赵思雄, 孙建华.一次引发暴雨的东北低涡的涡度和水汽收支分析.气候与环境研究, 2007, 12(3): 397-411. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703020.htm
    孙力, 郑秀雅, 王琪.东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系.应用气象学报, 1994, 5(3):297-303. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940353&flag=1
    陈文选, 王俊, 刘文.一次冷涡过程降水的微物理机制分析.应用气象学报, 1999, 10(2):190-198. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990258&flag=1
    姜学恭, 孙永刚, 沈建国. 98.8松嫩流域一次东北冷涡暴雨的数值模拟初步分析.应用气象学报, 2001, 12(2):176-187. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010224&flag=1
    章国材, 李晓莉, 乔林.夏季500 hPa副热带高压区域一次暴雨过程环流条件的诊断分析.应用气象学报, 2005, 16(3):396-401. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050348&flag=1
    Kei Sakamoto. Cut off and weakening processes of an upper cold low. Journal of the Meteorological Society of Japan, 2005, 83: 817-834. doi:  10.2151/jmsj.83.817
    齐彦斌, 郭学良, 金德镇.一次东北冷涡中对流云带的宏微物理结构探测研究.大气科学, 2007, 31(4): 621-634. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704006.htm
    刘健, 张文建, 朱元竞, 等.中尺度强暴雨云团云特征的多种卫星资料综合分析.应用气象学报, 2007, 18(2): 158-164. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070228&flag=1
    方宗义, 覃丹宇.暴雨云团的卫星监测和研究进展.应用气象学报, 2006, 17(5):584-593. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605100&flag=1
    Stephens G L, Coauthors. The CloudSat mission and the A-train. Bull Amer Meteor Soc, 2002, 83: 1771-1790. doi:  10.1175/BAMS-83-12-1771
    Richard Austin. Level 2 Cloud Ice Water Content Product Process Description and Interface Control Document. Colorado: Colorado State University, 2004:1-29.
    钟水新. 一次东北冷涡暴雨过程的诊断分析与数值模拟研究. 北京: 中国气象科学研究院, 2008.
    郑秀雅, 张延治, 白人海.东北暴雨.北京:气象出版社, 1992: 129-130.
    Simmons A J, Hoskins B J. The downstream and upstream development of unstable baroclinic waves. J Atmos Sci, 1979, 36: 1239-1254. doi:  10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2
    Thorncroft C D, Hoskins B J. Frontal cyclogenesis. J Atmos Sci, 1990, 47: 2317-2336. doi:  10.1175/1520-0469(1990)047<2317:FC>2.0.CO;2
    Orlanski I, Chang E K M. Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J Atmos Sci, 1993, 50: 212-225. doi:  10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2
    Decker S G, Martin J E. A local energetic analysis of the life cycle differences between consecutive, explosively deepening, continental cyclones. Mon Wea Rev, 2005, 133: 295-316. doi:  10.1175/MWR-2860.1
    Mailier P J, Stephenson D B, Ferro C A T, et al. Serial clustering of extratropical cyclones. Mon Wea Rev, 2006, 134: 2224-2240. doi:  10.1175/MWR3160.1
    Derek J P, Graeme L S, Martin M. CLOUDSAT: Adding a new dimension to a classical view of extratropical cyclones. Bull Amer Meteor Soc, 2008, 89(5): 599-609. doi:  10.1175/BAMS-89-5-599
    Shapiro M A, Keyser D. Fronts, Jet Streams, and the Tropopause. Amer Meteor Soc, 1990: 167-191. doi:  10.1175/BAMS-89-5-599
    Posselt D J, Martin J E. The role of latent heat release in the formation of a warm occluded thermal structure. Mon Wea Rev, 2004, 132: 578-599. doi:  10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2
  • 加载中
  • -->


    Figures(8)  / Tables(1)

    Article views (3709) PDF downloads(1508) Cited by()
    • Received : 2010-06-21
    • Accepted : 2011-02-16
    • Published : 2011-06-30


    DownLoad:  Full-Size Img  PowerPoint