Yan Peng, Huan Ning, Zhang Yangmei, et al. Size resolved aerosol OC, EC at a regional background station in the suburb of Beijing. J Appl Meteor Sci, 2012, 23(3): 285-293. .
Citation: Yan Peng, Huan Ning, Zhang Yangmei, et al. Size resolved aerosol OC, EC at a regional background station in the suburb of Beijing. J Appl Meteor Sci, 2012, 23(3): 285-293. .

Size Resolved Aerosol OC, EC at a Regional Background Station in the Suburb of Beijing

More Information
  • Carbonaceous aerosols constitute major component of atmospheric aerosols. In Feburay, May, July and September of 2004, size resolved aerosol sampling measurements are conducted respectively at Shangdianzi Regional Atmospheric Background Monitoring Station which is in the suburb of Beijing, to represent the four seasons of the year. OC, EC are analyzed in the lab with Sunset OC/EC Analyzer (NIOSH TOT method, Sunset Lab, USA). The seasonal variations and size distributions of OC and EC composition are characterized, and correlations between OC and EC are discussed as well. The analysis shows that the mean concentration of OC for TSP (Total Suspend Particles) at Shangdianzi Station in the four seasons ranges from 7.5 μg·m-3 to 31.5 μg·m-3, and EC ranges from 1.4 μg·m-3 to 6.6 μg·m-3. As to PM2.1 (particles with aerodynamic diameter less than 2.1 μm), the mean concentrations are from about 4.0 μg·m-3 to 19.1 μg·m-3 for OC, and from about 0.8 μg·m-3 to 4.3 μg·m-3 for EC. The significant seasonal variations of mean OC, EC at Shangdianzi are found with the highest OC and EC concentration appearing in winter and lowest in summer. The size distributions of OC and EC at the Shangdianzi Station shows obvious seasonal differences, with OC and EC peak size at 0.65—2.1 μm during the winter, summer and fall time, and shifts to 2.1—4.7 μm during the spring time. In summer and fall, the OC and EC are mostly concentrated in the fine particles (with particle size less than 2.1 μm). In spring, the size distributions of OC and EC are quite different, where there is a significant enhancement OC, EC mass contents in the coarse particles, which is related to the collision of carbonaceous aerosols with dust particles rich in the spring atmosphere. The mass of organic matter ([OM]=1.4[OE]) in PM2.1 accounts for about 43%—80% of the total mass of OM, and EC in PM2.1 accounts for 54%—70% of total EC. The average ratio of OC and EC for the whole period of sampling is about 4.0—6.0, which is similar with the reported values obtained at many urban sites of China, when considering the difference between the OC, EC laboratory analysis methods. The square correlation coefficients (R2) between OC and EC in winter, spring and fall are 0.84, 0.81, and 0.73 respectively. However, the correlation coefficient is lowest in summer, with R2 about 0.49. This seasonal pattern of correlations indicates the complications for sources and production or removal processes of the carbonaceous aerosols in summer time in that region.
  • Fig  1.   Map of Shangdianzi Station and the major cities in the region

    Fig  2.   Size distributions of aerosol mass concentrations with OC and EC in different seasons in 2004

    Fig  3.   The size spectra of OC and EC mass concentrations in different seasons in 2004

    Fig  4.   The ratios (r) of OC to EC mass concentrations with their correlations in different seasons in 2004

    Table  1   Mass concentrations and ratios of OC and EC, and percentages of OC and OM in their respective total mass for TSP, PM11, and PM2.1 in different seasons at Shangdianzi Station

    气溶胶粒子 采样日期 平均值 (标准差)/(μg·m-3) OC平均值 (标准差)/(μg·m-3) EC平均值 (标准差)/(μg·m-3) TC平均值 (标准差)/(μg·m-3) OC质量百分比/% OM质量百分比/%
    TSP 2004-02 155.96(105.75) 31.52(20.85) 6.64(5.53) 38.17(26.27) 20.2 28.3
    2004-05 110.44(54.38) 9.50(3.35) 1.44(0.82) 10.95(4.13) 8.6 12.0
    2004-07 91.42(55.58) 7.56(3.43) 1.90(1.09) 9.47(4.26) 8.3 11.6
    2004-09 143.57(68.29) 20.51(11.25) 3.92(1.46) 24.43(12.51) 14.3 20.0
    PM11 2004-02 135.15(98.04) 26.87(18.71) 5.93(5.29) 32.80(23.83) 19.9 27.8
    2004-05 85.38(48.25) 7.05(2.55) 1.28(0.78) 8.33(3.29) 8.3 11.6
    2004-07 85.10(53.68) 6.77(3.04) 1.66(0.87) 8.43(3.71) 8.0 11.1
    2004-09 133.95(66.31) 19.36(11.04) 3.54(1.37) 22.90(12.22) 14.5 20.2
    PM2.1 2004-02 76.86(65.59) 19.11(14.45) 4.33(3.81) 23.44(18.17) 24.9 34.8
    2004-05 33.40(20.92) 4.09(1.60) 0.78(0.43) 4.88(2.00) 12.3 17.2
    2004-07 66.01(44.46) 5.07(2.66) 1.26(0.66) 6.33(3.16) 7.7 10.8
    2004-09 92.77(51.25) 16.37(10.36) 2.74(1.12) 19.11(11.27) 17.6 24.7
    DownLoad: CSV

    Table  2   The correlations between OC and EC for PM2.1 at Shangdianzi Station and the comparisons with the results (for PM2.5) observed in other regions of China

    地点 时间 R2 比值 分析方法 文献来源
    广州新垦 2002-04 0.57 7.38 NIOSH TOT 刘新民等[41]
    2002-11 0.83 5.08
    广州 2002-04 0.81 5.46
    2002-11 0.95 8.69
    北京 1999-07—2000-06 2.72 IMPROVE TOR Yang等[18]
    上海 1999-03—2000-03 2.39
    北京 2003-01 0.94 1.87 R & P 5400 Yu等[19]
    2003-08 0.81 2.39
    北京 2004年冬季 0.82 4.36 NIOSH TOT 郇宁等[40]
    珠江三角洲 2002年冬季 0.82 2.5 IMPROVE TOR Cao等[17, 30]
    2002年夏季 0.63 2.5
    太原 2005-12—2006-02 7.0 NIOSH TOT 孟昭阳等[23]
    北京上甸子 2004-02 0.94 4.4 NIOSH TOT 本研究
    2004-05 0.81 5.2
    2004-07 0.49 4.0
    2004-09 0.63 6.0
    DownLoad: CSV
  • Zhang R J, Cao J J, Lee S C, et al. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing. Journal of Environmental Sciences, 2007, 19: 564-571. DOI: 10.1016/S1001-0742(07)60094-1
    Turpin B J, Lim H. Species contribution to PM2.5 concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci Technol, 2001, 35: 602-610. DOI: 10.1080/02786820119445
    Chow J C, Watson J G, Chen L W A, et al. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Evironmental Science and Techonology, 2004, 38: 4414-4422. DOI: 10.1021/es034936u
    Malm W C, James F S, Dale H. Spatial and seasonal trends in particle concentration and optical extinction in the united states. J Geophy Res, 1994, 99(D1): 1347-1370. DOI: 10.1029/93JD02916
    Gundel L A, Guyot-Sionnet N S, Novakov T. A study of NO2 with carbon particles. Aerosol Science & Technology, 1989, 10: 345-351. https://www.researchgate.net/publication/23812445_The_enhanced_oxidation_of_SO2_by_NO2_on_carbon_particulates
    IPCC. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007.
    Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 2001, 409: 695-697. DOI: 10.1038/35055518
    Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India. Science, 2002, 297: 2250-2253. DOI: 10.1126/science.1075159
    Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerocols, climate, and the hydrological cycle. Science, 2001, 294: 2119-2124. DOI: 10.1126/science.1064034
    张瑛, 高庆先.硫酸盐和碳黑气溶胶辐射效应的研究.应用气象学报, 1997, 8(增刊): 87-91. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.011.htm
    Appel B R, Colodny P, Wesolowski J J. Analysis of carbonaceous materials in Southern California atmospheric aerosols. Environmental Science and Technology, 1976, 10(4): 359-363. DOI: 10.1021/es60115a005
    Gray H A, Gass G R. Characteristics of atmospherico organic and elemental carbon particle concentrations in Los Angeles. Environmental Science and Technology, 1986, 20: 580-589. DOI: 10.1021/es00148a006
    Chow J C, Watson J G. PM2.5 carbonacate concentrations at regionally representative interagency monotoring of protected visual environment sites. J Geophy Res, 2002, 107(D21): 8344, doi: 10.1029/2001JD000574.
    Macias E S, Zwicker J O, Ouimette J R, et al. Regional haze case studies in the Southwestern US—I Aerosol chemical composition. Atmos Environ, 1981, 15: 1971-1986. DOI: 10.1016/0004-6981(81)90231-6
    Vasconcelos L A, Macias E S, White W H. Aerosol composition as a function of haze and humidity levels in the southwestern US. Atmos Environ, 1994, 28: 3679-3691. DOI: 10.1016/1352-2310(94)00187-P
    Bergin M, Cass G R, Xu J, et al. Aerosol radiative, physical, and chemical properties in Beijing during June 1999. J Geophys Res, 2001, 106(D16): 17969-17980. DOI: 10.1029/2001JD900073
    Cao J J, Lee S C, Ho K F, et al. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ, 2004, 38: 4447-4456. DOI: 10.1016/j.atmosenv.2004.05.016
    Yang F, He K, Ye B, et al. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos Chem Phys, 2005, 5: 1449-1457. DOI: 10.5194/acp-5-1449-2005
    Yu J, Chen T, Guinot B, et al. Characteristics of carbonaceous particles in Beijing during winter and summer 2003. Adv Atmos Sci, 2006, 23(3): 468-473. DOI: 10.1007/s00376-006-0468-5
    郇宁, 曾立民, 邵敏.气溶胶中有机碳及元素碳分析方法进展.北京大学学报:自然科学版, 2005, 41(6): 957-964. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200506016.htm
    张养梅, 颜鹏, 杨东贞, 等.临安大气气溶胶理化特性季节变化.应用气象学报, 2007, 18(5): 635-644. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070598&flag=1
    汤洁, 温玉璞, 周凌晞, 等.中国西部大气清洁地区黑碳气溶胶的观测研究.应用气象学报, 1999, 10(2): 160-170. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990255&flag=1
    孟昭阳, 张怀德, 蒋晓明, 等.太原冬季PM2.5中有机碳和元素碳的变化特征.应用气象学报, 2007, 18(4): 524-531. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070482&flag=1
    唐小玲, 毕新慧, 陈颖军, 等.不同粒径大气颗粒物中有机碳 (OC) 和元素碳 (EC) 的分布.环境科学研究, 2006, 19(1): 104-108. http://cdmd.cnki.com.cn/Article/CDMD-80165-2005128945.htm
    Kanakidou M, Seinfeld J H, Pandis S N, et al. Organic aerosol and global climate modelling: A review. Atmospheric Chemistry and Physics, 2005, 5(4): 1053-1123. DOI: 10.5194/acp-5-1053-2005
    颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3): 257-265. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100301&flag=1
    颜鹏, 张养梅, 杨东贞, 等. 2003年夏季临安地区大气气溶胶离子成分的尺度分布特征.气象学报, 2005, 63(6): 980-987. DOI: 10.11676/qxxb2005.093
    Birch M E, Cary R A. Elemental carbon-base method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol, 1996, 25: 221-241. DOI: 10.1080/02786829608965393
    Chow J C, Watson J G, Crow D, et al. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology, 2001, 34: 23-34. DOI: 10.1080/02786820119073
    Cao J J, Lee S C, Ho K F, et al. Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos Environ, 2003, 37: 1451-1460. DOI: 10.1016/S1352-2310(02)01002-6
    Duce R A, Mohnen V A, Zimmerman P R, et al. Organic material in the global tropopause (troposphere). Rev Geophys Space Phys, 1983, 21: 921-952. DOI: 10.1029/RG021i004p00921
    Countess R J, Wolff G T, Cadle S H. The Denver winter aerosol: A comprehensive chemical characterization. J Air Pollut Control Assoc, 1980, 30: 1194-1200. DOI: 10.1080/00022470.1980.10465167
    Ye B M, Ji X L, Yang H Z, et al. Concentration and chemical composition of PM2.5 in Shanghai in one-year period. Atmos Environ, 2003, 37: 499-510. http://www.doc88.com/p-7758292471842.html
    Sun Y L, Zhuang G S, Ying W, et al. The air-borne particulate pollution in Beijing—Concentration, composition, distribution and sources. Atmos Environ, 2004, 38: 5991-6004. DOI: 10.1016/j.atmosenv.2004.07.009
    Xu J, Bergin M H, Yu X, et al. Measurement of aerosol chemical, physical, and radiative properties in the Yangtze Delta Region of China. Atmos Environ, 2002, 36: 161-173. DOI: 10.1016/S1352-2310(01)00455-1
    Chuang P Y, Duvall R M, Bae M S, et al. Observations of elemental carbon and absorption during ACE-Asia and implications for aerosol radiative properties and climate forcing. J Geophys Res, 2003, 108(D23): 8634, doi: 10.1029/2002JD003254.
    Seinfeld J H, Pandis S N. Atmopsheirc Chemistry and Physics:From Air Pollution to Climate Change. New York: John Wiley & Sons, 1997.
    胡敏, 赵云良, 何凌燕, 等.北京冬、夏季颗粒物及其离子成分质量浓度谱分布.环境科学, 2005, 26(4): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200504001.htm
    Novakov T, Menon S, Kirchstetter T W, et al. Aerosol organic to black carbon ratios: Analysis of published data and implications for climate forcing. J Geophys Res, 2005, 110, D21205, doi: 10.1029/2005JD005977.
    郇宁, 曾立民, 邵敏, 等.北京市冬季PM215中碳组分的测量与分析.北京大学学报:自然科学版, 2006, 42(2): 265-270. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200602026.htm
    刘新民, 邵敏, 曾立民, 等.珠江三角洲地区气溶胶中含碳物质的研究.环境科学, 2002, 23(增刊):54-59. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ2002S1011.htm
  • Related Articles

    [1]Wang Jun, Zheng Lina, Wang Hong, Liu Chang. Statistical Characteristics and Regional Differences of Raindrop Size Distribution During 6 Typhoon Rainstorms in Shandong[J]. Journal of Applied Meteorological Science, 2023, 34(4): 475-488. DOI: 10.11898/1001-7313.20230408
    [2]Huang Zewen, Peng Siyue, Zhang Haoran, Zheng Jiafeng, Zeng Zhengmao, Wang Yingjue. Characteristics of Raindrop Size Distribution at Anxi of Fujian[J]. Journal of Applied Meteorological Science, 2022, 33(2): 205-217. DOI: 10.11898/1001-7313.20220207
    [3]Mei Haixia, Liang Xinzhong, Zeng Mingjian, Li li, Zu Fan, Li Yutao. Raindrop Size Distribution Characteristics of Nanjing in Summer of 2015-2017[J]. Journal of Applied Meteorological Science, 2020, 31(1): 117-128. DOI: 10.11898/1001-7313.20200111
    [4]Song Can, Zhou Yuquan, Wu Zhihui. Vertical Profiles of Raindrop Size Distribution Observed by Micro Rain Radar[J]. Journal of Applied Meteorological Science, 2019, 30(4): 479-490. DOI: 10.11898/1001-7313.20190408
    [5]Jin Qi, Yuan Ye, Ji Lei, Lu Dejin, Feng Jingyi. Characteristics of Raindrop Size Distribution for a Squall Line at Chuzhou of Anhui During Summer[J]. Journal of Applied Meteorological Science, 2015, 26(6): 725-734. DOI: 10.11898/1001-7313.20150609
    [6]Liu Chenzhong, Zhou Yunjun, Gu Juan, Huang Lei, Xiang Gang. Characteristics of Raindrop Size Distribution in Chengdu[J]. Journal of Applied Meteorological Science, 2015, 26(1): 112-121. DOI: 10.11898/1001-7313.20150112
    [7]Yan Wenlian, Zhou Deping, Wang Yangfeng, Yang Jun, Li Zihua. Concentrations and Size Distributions of Inhalable Particles in Summer and Winter in Shenyang[J]. Journal of Applied Meteorological Science, 2008, 19(4): 435-443.
    [8]Zhang Yangmei, Yan Peng, Yang Dongzhen, Wang Shufeng, Tang Jie, Yu Xiangming, Ma Qianli. Seasonal Physical and Chemical Features Variation of Ambient Aerosol in Lin'an[J]. Journal of Applied Meteorological Science, 2007, 18(5): 635-644.
    [9]Meng Zhaoyang, Zhang Huaide, Jiang Xiaoming, Yan Peng, Wang Yan, Lin Weili, Zhang Yangmei, Wang Shufeng. Characteristics of Organic Carbon and Elemental Carbon in PM2.5 During Winter in Taiyuan[J]. Journal of Applied Meteorological Science, 2007, 18(4): 524-531.
    [10]Dou Xiankang, Liu Wanshuan, P. Amayenc, Liu Jinli. Optimizationb of the Parameter of the Raindrop Size Distribution in Rain Rate Measurement by Airborne Radar[J]. Journal of Applied Meteorological Science, 1999, 10(3): 293-298.

Catalog

    Figures(4)  /  Tables(2)

    Article views3799 PDF downloads1641 Cited by: 
    • Received : 2011-09-15
    • Accepted : 2012-02-03
    • Published : 2012-06-29

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return