Yan Xiaolu, Zheng Xiangdong, Li Wei, et al. Inter-comparision and application of atmospheric humidity profiles measured by CFH and Vaisala RS80 radisondes. J Appl Meteor Sci, 2012, 23(4): 433-440.
Citation: Yan Xiaolu, Zheng Xiangdong, Li Wei, et al. Inter-comparision and application of atmospheric humidity profiles measured by CFH and Vaisala RS80 radisondes. J Appl Meteor Sci, 2012, 23(4): 433-440.

Inter-comparision and Application of Atmospheric Humidity Profiles Measured by CFH and Vaisala RS80 Radisondes

  • Received Date: 2011-08-12
  • Rev Recd Date: 2012-06-01
  • Publish Date: 2012-08-31
  • Vertical profiles of atmospheric humidity simultaneously measured by balloon-borne Cryogenic Frostpoint Hygrometer (CFH) and Vaisala RS80 radiosonde in Tengchong, Yunnan in August 2010 are analyzed. Currently, CFH is the reference instrument in the measurement of atmosphere water vapor profile. RS80 radiosonde is ever extensively used in the world before the middle of 1990s. The humidity data measured by CFH is used to assess the quality of RS80 radiosonde humidity data. The difference of RS80 radiosonde humidity data in day and night time respectively compared to CFH data is also given in individual inter-comparison. The results have revealed there is a large dry bias produced by the RS80 humidity sensor with average of (23.7±18.5)%, and the daytime dry bias is (13.5±14.8)% larger than that in the nighttime owing to solar radiation heating on the humidity sensor. In addition, RS80 radiosonde is almost incapable of measuring the valuable humidity data in the transition region from upper troposphere to lower stratosphere. For the integrated precipitable water (PW) amounts from the profiles of GTS1, RS80, CFH and their comparisons with GPS measurements, CFH integrated PW is (4.3±2.0) mm (number of samples is 11) higher than that of GPS because that CFH tends to be saturation at moist condition, especially when passes through cloud in lower troposphere, while the PW differences of RS80, GTS1 from the GPS measurements are (0.2±1.4) mm (number of samples is 12) and (-0.2±2.2) mm (number of samples is 43) respectively. The value of GPS PW is not sensitive to the humidity variations in the altitudes above upper troposphere. CFH is demonstrated as an effective instrument measuring water vapor concentration in the circumstance with lower temperature as well as lower humidity, such as in the upper troposphere and lower stratosphere. Owing to dry bias, RS80 radiosonde detects less middle or high clouds than CFH does, especially in the detection of high clouds above 6000 m where the low humidity value from RS80 radiosonde almost cannot indicate the occurrence of cloud. Therefore, the occurrence frequency and altitude of high cloud would be much underestimated if RS80 radiosonde water profiles are used.
  • Fig. 1  Vertical profiles of water concentration (a) measured by CFH and RS80 radiosondes with their relative difference δq(b) at Tengchong, Yunnan in August 2010

    Fig. 2  Individual intercomparison of day-time water vapor concentration profiles (a) measured by CFH and RS80 radiosondes with their relative difference δq(b) at Tengchong, Yunnan on 26 August 2010

    Fig. 3  Individual intercomparison of night-time water vapor concentration profiles (a) measured by CFH and RS80 radiosondes with their relative difference δq(b) at Tengchong, Yunnan on 15 August 2010

    Fig. 4  Intercomparisons of precipitable water (PW) amounts between GPS measurements and different integrated values of radiosonde-based water concentration profiles at Tengchong, Yunnan in August 2010

    Table  1  Intercomparsion of averaged water vapor concentrations between CFH and Vaisala RS80 radiosonde measurements (unit: 10-6)

    高度/km RS80 CFH
    DownLoad: Download CSV

    Table  2  Inter-comparison of cloud altitudes detected by RS80 and CFH at Tengchong, Yunnan in 2010(unit: m)

    日期 低云中云高云
    DownLoad: Download CSV
  • [1]
    Zhai P, Eskridge R E. Analyses of inhomogeneities in radiosonde temperature and humidity time series. J Climate, 1996, 9: 884-894. doi:  10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2
    李吉明, 孙宜军, 薛蜀云.中华人民共和国气象行业标 (QX /T 36—2005), GTS 1型数字探空仪.北京:中国气象局, 2005.
    王冬玫, 张小斌, 王志文, 等.芬兰GPS探空仪与中国L波段探空仪试验数据对比分析.仪器仪表学报, 2008, 28(8):461-464. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-YQYB200712002112.htm
    李伟, 邢毅, 马舒庆.国产GTS1探空仪与VAISALA公司RS92探空仪对比分析.气象, 2009, 35(10):97-102. doi:  10.7519/j.issn.1000-0526.2009.10.012
    李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. doi:  10.11898/1001-7313.20110408
    Bian J C, Chen H B, Vömel H, et al. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv Atmos Sci, 2011, 28(1):139-146. doi:  10.1007/s00376-010-9170-8
    Miloshevich L, Vömel H, Paukkunen A, et al. Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J Atmos Oceanic Technol, 2001, 18:135-156. doi:  10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2
    Vömel H, David D, Smith K. Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J Geophys Res, 2007, 112, D08305, doi: 10.1029/2006JD007224.
    Vömel H, Barnes J E, Forno R N, et al. Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements. J Geophys Res, 2007, 112, D24S37, doi: 10.1029/2007JD008698.
    Nash J, Oakley T, Vömel H, et al. WMO Intercomparsion of High Quality Radiosonde Systems. Instruments and Observing Methods Report. 2011, 107:91-152.
    Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res, 1992, 97:15787-15801. doi:  10.1029/92JD01517
    Wang J, Zhang L. Systematic errors in global radiosonde perceptible water data from comparisons with ground-based GPS measurements. J Climate, 2008, 21:2218-2238. doi:  10.1175/2007JCLI1944.1
    Hyland R W, Wexler A. Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Trans, 1983, 89:500-519. https://www.mendeley.com/research-papers/formulations-thermodynamic-properties-saturated-phases-h2o-17315-k-47315-k/
    Miloshevich L, Holger V, David N W, et al. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J Geophys Res, 2009, 114, D11305, doi:  10.1029/2008JD011565.
    杨红梅, 葛润生, 徐宝祥.用单站探空资料分析对流层气柱水汽总量.气象. 1998, 24(9):8-11. doi:  10.7519/j.issn.1000-0526.1998.09.002
    李延兴, 徐宝祥, 胡新康, 等.应用地基GPS技术遥感大气柱水汽量的实验研究.应用气象学报, 2001, 12(1):61-69. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010107&flag=1
    何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13(2):179-183. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1
    李成才, 毛节泰. GPS地基遥感大气水汽总量分析.应用气象学报, 1998, 9(4):470-471. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980469&flag=1
    向玉春, 陈正洪, 徐桂荣, 等.三种大气可降水量推算方法结果的比较分析.气象, 2009, 35(11):48-54. doi:  10.7519/j.issn.1000-0526.2009.11.006
    柳典, 刘晓阳.地基GPS遥感观测北京地区水汽变化特征.应用气象学报, 2009, 20(3):346-353. doi:  10.11898/1001-7313.20090311
    Wang J, Rossow W B. Determination of cloud vertical structure from upper-air obervations. J Applied Meteorology, 1995, 34:2243-2258. doi:  10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2
  • 加载中
  • -->


    Figures(4)  / Tables(2)

    Article views (3299) PDF downloads(2031) Cited by()
    • Received : 2011-08-12
    • Accepted : 2012-06-01
    • Published : 2012-08-31


    DownLoad:  Full-Size Img  PowerPoint