Cheng Zhengquan, Chen Lianshou, Li Ying. Interaction between landfalling tropical cyclone and summer monsoon with influences on torrential rain. J Appl Meteor Sci, 2012, 23(6): 660-671.
Citation: Cheng Zhengquan, Chen Lianshou, Li Ying. Interaction between landfalling tropical cyclone and summer monsoon with influences on torrential rain. J Appl Meteor Sci, 2012, 23(6): 660-671.

Interaction Between Landfalling Tropical Cyclone and Summer Monsoon with Influences on Torrential Rain

  • Received Date: 2011-12-14
  • Rev Recd Date: 2016-08-10
  • Publish Date: 2012-12-31
  • Based on Tropical Cyclone Yearbooks, NCEP/NCAR reanalysis data and dynamic composite analysis, the relationship between the torrential rain associated with landfalling tropical cyclones and summer monsoon jets is studied. Several sets of numerical experiments are carried out to analyze influences on heavy rain of interaction between the landfalling tropical cyclone Bilis (2006) and the summer monsoon. Composite analysis show that tropical cyclones resulting in a large range of torrential rain always link with a low-level jet for a long time even after landfall, which makes them obtain sufficient water vapor flux. While for the weak rainfall tropical cyclones, the linking might break before landfall, which cuts off the water vapor transport from the low level jet. Numerical experiments reveal that water vapor transport from the low-level jet of summer monsoon is favorable to the maintenance of the tropical cyclone structure of warm core. Cutoff of the water vapor transport will lead to the stretch of a dry tongue into the cyclonic circulation from the boundary, destruct the tropical cyclone structure, and make the mesoscale and microscale synoptic systems weakened, which results in the obvious weakness of the rainfall intensity and the reduction of heavy rain coverage. Water vapor transport from the southern boundary is much more important than any other boundary. In the sensibility numerical experiment, the wave spectrum method is applied to alter the mesoscale and microscale winds to strengthen and weaken the monsoon jet speed. Results show that moderate change of wind speed in low level jet only change the distribution and coverage of heavy rain a little, but the grid number of extremely strong rainfall (more than 200 mm) varies notably. Under the background of summer monsoon, a tropical cyclone moving into the monsoon channel will strengthen wind speed of the low level jet, which strengths the transport of water vapor at low level. Furthermore, the movement of tropical cyclone over land changes the distribution of water vapor, instability energy and the relevant heavy rain, and the unique dynamic structure of tropical cyclone, and strong convergence at low level and strong divergence at upper level, could strengthen the rain intensity.
  • Fig. 1  Composite 850 hPa wind (vector) and water vapor flux (shaded, unit: g·s-1·hPa-1·cm-1) of strong and weak rainfall tropical cyclones

    (abscissa represents grid number away from the tropical cyclone center, and negative denotes westwards and southwards; tropical cyclone center is located at coordinate origin and grid space is 1.0°)

    Fig. 2  850 hPa wind (vector, unit:m/s) and water vapor flux (shaded, unit: g·cm-1·hPa-1·s-1) 24 h after Bilis landfalling with its boundary (rectangle)

    Fig. 3  Observations and simulated track (a) and minimal central SLP (b)

    Fig. 4  24 h total rainfall observation and outputs of control and NS sensitivity experiments from 14 July to 16 July in 2006

    Fig. 5  850 hPa specific humidity (shaded) and wind (vector) of CTRL1 and NALL experiments

    Fig. 6  850 hPa initial winds (a), decomposed large-scale winds (b), decomposed meso-and micro-scale winds and initial winds in SMON (d) and WMON (e) at 0000 UTC 14 Jul 2006

    Fig. 7  24 h accumulated rainfall of CTRL2, SMON and WMON

    Table  1  Maximal 24 h accumulated rainfall heavy rain grid number in the numerical experiments

    试验 0~24 h 24~48 h
    降水量/mm 超过100 mm格点数 超过200 mm格点数 降水量/mm 超过100 mm格点数 超过200 mm格点数
    CTRL2 153.2 1142 3 267.7 2297 113
    SMON 178.5↑ 1186↑ 12↑ 281.9↑ 2367↑ 179↑
    WMON 143.5↓ 979↓ 0↓ 215.8↓ 1530↓ 7↓
    注:↑表示增加,↓表示减少。
    DownLoad: Download CSV
  • [1]
    陶诗言.中国之暴雨.北京:科学出版社, 1980.
    [2]
    程正泉, 陈联寿, 彭涛涌, 等. 1960—2003年中国热带气旋降水时空分布特征.应用气象学报, 2007, 18(4):427-434. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070470&flag=1
    [3]
    Li Tim, Wang Bin. A review on the western north Pacific monsoon: Synoptic-to-interannual variabilities, terrestrial. Atmospheric and Oceanic Sciences, 2005, 16(2): 285-314. doi:  10.3319/TAO.2005.16.2.285(A)
    [4]
    Mark A L. Description of a monsoon Gyre and its effects on the tropical cyclones in the western north Pacific during August 1991. Wea Forecasting, 1994, 9(4): 640-654. doi:  10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2
    [5]
    Chen Tsing-Chang, Weng Shu-Ping, Yamazaki Nubuo, et al. Interannual variation in the tropical cyclone formation over the western north Pacific. Mon Wea Rev, 1998, 126(4): 1080-1090. doi:  10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2
    [6]
    陈联寿, 丁一汇.西太平洋台风概论.北京:科学出版社, 1979.
    [7]
    李英, 陈联寿, 王继志.登陆热带气旋长久维持与迅速消亡的大尺度环流特征.气象学报, 2004, 62(2):167-179. doi:  10.11676/qxxb2004.018
    [8]
    程正泉, 陈联寿, 李英.登陆台风降水的大尺度环流诊断分析.气象学报, 2009, 67(5):840-850. doi:  10.11676/qxxb2009.082
    [9]
    丁一汇.高等天气学.北京:气象出版社, 2005.
    [10]
    Cheng Zhaohui, Kang Di, Chen Lianshou, et al. Interaction between tropical cyclone and Meiyu front. Acta Meteorologica Sinica, 1999, 13(1):35-46. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qxxw199901003&dbname=CJFD&dbcode=CJFQ
    [11]
    吴恒强.影响广西的热带气旋与热带季风的某些关系.气象, 2002, 28(9): 27-32. doi:  10.7519/j.issn.1000-0526.2002.09.006
    [12]
    卢珊, 王黎娟, 管兆勇, 等.低纬季风涌影响登陆台风"榴莲"(0103) 和"碧利斯"(0604) 暴雨增幅的比较.大气科学学报, 2012, 35(2):175-185. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201202006.htm
    [13]
    黄小玉, 陈江民, 叶成志. "碧利斯"引发湘东南特大暴雨的多普勒雷达回波特征分析.大气科学学报, 2010, 31(1):7-13. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201001002.htm
    [14]
    叶成志, 李昀英.热带气旋"碧利斯"与南海季风相互作用的强水汽特征数值研究.气象学报, 2011, 69(3):496-507. doi:  10.11676/qxxb2011.043
    [15]
    钱传海, 路秀娟, 陈涛.引起"碧利斯"强降水的MCS数值模拟研究.气象, 2009, 35(4):11-19. doi:  10.7519/j.issn.1000-0526.2009.04.002
    [16]
    卢咸池, 何斌.初值格谱变换的比较分析.计算物理, 1992, 9(4):768-770. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL1992S2038.htm
    [17]
    孟智勇, 徐祥德, 陈联寿. 9406号台风与中纬度系统相互作用的中尺度特征.气象学报, 2002, 60(1):31-39. doi:  10.11676/qxxb2002.003
    [18]
    陈久康, 丁治英.高低空急流与台风环流耦合下的中尺度暴雨系统.应用气象学报, 2000, 11(3):271-281. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000342&flag=1
    [19]
    徐文慧, 倪允琪.登陆台风环流内的一次中尺度强对流过程.应用气象学报, 2009, 20(3):267-275. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090302&flag=1
    [20]
    Chen Lianshou, Luo Zhexian. Effect of the interaction of different scale vortices on the structure and motion of typhoons. Adv Atmos Sci, 1995, 12(2): 207-214. doi:  10.1007/BF02656833
    [21]
    陈联寿.热带气旋研究和业务预报技术的发展.应用气象学报, 2006, 17(6):672-681. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606116&flag=1
    [22]
    郭荣芬, 肖子牛, 陈小华, 等.两次西行热带气旋影响云南降水对比分析.应用气象学报, 2010, 21(3):317-328. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100307&flag=1
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (3420) PDF downloads(1229) Cited by()
    • Received : 2011-12-14
    • Accepted : 2016-08-10
    • Published : 2012-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint