Su Aifang, Sun Jinglan, Gu Xiujie, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229. .
Citation: Su Aifang, Sun Jinglan, Gu Xiujie, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229. .

Characteristics and Conceptual Models of Convective Rainstorm Clouds in Henan Province

  • Study on severe weather's conceptual models is important for improving forecasting and early warning capabilities of severe weather. Using FY-2C/E and MODIS satellite data, A0 data, precipitation data of automatic weather stations and conventional observations, meso-scale convective systems criteria of convective rainstorm is revised, and their activity rhythm, as well as rainfall characteristics, are analyzed during convective rainstorm processes. In addition, convective rain storm conceptual models in Henan Province are studied based on analysis of cloud systems and synoptic situations. MCSs of convective rainstorm in Henan Province include newborn convective cloud clusters, MαCS, MβCS and banded MCSs. MCSs with different shape and scale have different characteristics of precipitation. Newborn convective clusters are easy to produce 20—29.9 mm·h-1 rain intensity. The probability of exceeding 30.0—49.9 mm·h-1 rain intensity brought by MβCS is obviously greater. The rain intensity exceeding 30.0 mm·h-1 is most likely caused by MαCS, but banded convective systems have higher probability of exceeding 50.0 mm·h-1 rain intensity than MαCS. However, each type of MCS can form strong intensity of rainfall over 80 mm·h-1 and the strongest intensity of rainfall is made by MβCS. The spatial and temporal variations and morphological characteristics of MCSs can give important information for forecasting thunder-rainstorm, and thunder-rainstorm is easy to occur during the formation and development of MCSs, and in the regions with big gradient of TBB in the back and the center of MCSs. Regions with high cloud optical thickness are potential areas of thunder-rainstorm. Dry and cold air masses in the processes of trough (vortex)-shear and trough's style play an important triggering role of MCSs. In the processes of high pressure's rear, MCSs are closely related to increasing temperature by radiation in boundary layer. Furthermore, energy front and convergence lines in boundary are the trigging systems. Dry lines in the shear line's processes are very important. Formation and development information of MCSs may be dependent on optical thickness. What's more, in the processes of high pressure's rear, the north of dark area on vapor images is easy to bring about MCSs. There are five potential regions of convective rainstorm in Henan Province, and four regions of them are near mountains. The routes of MCSs include eastward, northeastward and southeastward paths. Cloud track wind on high level can provide forecasting information of MCSs.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return