我国地面 O_3，NO_x，SO_2 背景值的观测研究

颜鹏 李兴生 罗超 徐晓斌 向荣彪
丁国安 汤洁 王木林 于晓岚

(中国气象科学研究院，北京 100081)

提要

从 1994 年 8 月至 1995 年 8 月，在龙风山、临安大气污染监测站和瓦里关大气本底基准
观测台对 O_3，NO_x 及 SO_2 首次进行了长期的连续观测。初步分析表明：3 站地面 O_3 的平均浓
度，月均分布日变化特征与地理环境、海拔高度和天气条件的不同，表现出明显的差异性，
平均地面 O_3 浓度，龙风山为 34.8×10^{-7}，临安为 39.1×10^{-7}，瓦里关山为 49.3×10^{-7}。龙风
山和临安的月平均地面 O_3 浓度分布较复杂，在 6～7 月和 12 月～1 月较低，10 月底～11 月
初较高，而在瓦里关山，月平均地面 O_3 浓度变化较平稳，6 月份最大，12 月最小，龙风山和
临安地面 O_3 平均日变化量较大，下午浓度最高，清晨最低，而瓦里关山地面 O_3 平均日变化
较小，上午浓度略低；NO_x 和 SO_2 的分布具有明显的局部性特征，在龙风山、临安和瓦里关
山，3 站的总平均浓度分别为 2.7×10^{-7}（NO_x）和 0.7×10^{-7}（SO_2），8.1×10^{-7}（NO_x）和 16.1
$\times 10^{-7}$（SO_2）。NO_x 和 SO_2 的浓度分别为 0.04×10^{-7}（NO_x）和 0.15×10^{-7}（SO_2）。

关键词：背景值；地面 O_3，NO_x，SO_2；浓度

前言

近十几年来，温室气候、O_3 和气溶胶的气候效应及其对全球环境和生态的影响已成为世界
各国关注的重大问题。有资料表明，近十多年来，在北半球中、高纬度地区（包括北极），大
气平流层 O_3 总量逐渐减少，这导致了到达地面的紫外辐射的增加，并将引起皮肤病变人的大量增加。观测事实表明，在平流层 O_3 减少的同时，对流层 O_3 浓度反而增加，由于地面附近 O_3 浓度的增加是一种严重的污染。研究发现，人类活动造成的大气污染不仅使城市及郊区地表附近 O_3 浓度大幅度增加，而且较清洁地区 O_3 浓度也有普遍增加的趋势。地面 O_3 浓度增加，将增加城市光化学烟雾，对人类和动物的呼吸系统有严重的破坏作用，并造成农作物产量减少，品质变劣；NO_x 作为光化学生成 O_3 的重要前体物，因其在大气中寿命较短，其时空分布差异较大，SO_2 是大气环境酸化和酸雨形成的
根源之一，与 NO_x 人为源相类似，主要是化石燃料的大量使用致使，由于人类活动的增加，它们的浓度已发生了很大的变化，同时其排放源的地区差异较大，且寿命期较短，浓度分布很不均匀。因此，选择在中国东部、东北部和西部 3 个监测站对地面 O_3 及其前

* 国家自然科学基金重大项目 (49392700) 资助。
1996-03-18 收到，1996-05-23 收到修改稿。
体物首次进行了综合的观测试验，以了解中国清洁地区地面 O_3 及其前体物及 SO_2 的分布特征。

1 观测

从 1994 年 8 月 13 日起，在龙凤山区域站（44°44′N，127°36′E，拔海 325 m）、临安大气污染物监测站（30°23′N，119°44′E，拔海 132 m）和瓦里关大气本底基准观测台（36°17′N，100°54′E，拔海 3810 m）进行了为期一年的综合观测试验。观测项目主要有地面 O_3、O_2 总量、NO_2、SO_2、CH_4、CO、NMHC、气溶胶、太阳辐射和地面气象要素等，其中 O_3、NO_2、SO_2 在 3 站为连续观测。本文仅对地面 O_3、NO_2、SO_2 的观测资料进行分析介绍。

试验采用的测量仪器大部分产自美国，地面 O_3，在龙凤山和瓦里关站采用 TE49 型 O_3 仪，临安采用 Dasibi O_3 仪；在龙凤山和临安测量 NO_2 采用 TE42S 型 NO_2 仪；SO_2 分别采用 TE43S 和 TE42S 型 SO_2 仪；瓦里关站因 NO_2 和 SO_2 大气本底浓度较低，采用膜采样法测量。以上仪器在观测开始时均进行了标定。观测过程中瓦里关站每两天标定一次，其它两站 3～6 个月标定一次。

本文采用 1994 年 8 月至 1995 年 8 月 3 站的连续观测资料进行分析，地面 O_3、NO_2、SO_2 在临安和龙凤山分别为每 1 分钟和 3 分钟记录平均值一次。瓦里关山地面 O_3 每 5 分钟记录平均值一次；NO_2 和 SO_2 因浓度低于仪器的检测限，故采用膜采样，每张膜连续采样 3～5 天。

2 地面 O_3、NO_2、SO_2 的分布特征

2.1 O_3 的变化

近地层 O_3 的变化受许多因素控制，与季节、气象因素以及前体物的排放强度，O_3 和前体物在大气中的传输、稀释和损耗有关。

图 1 为 3 站地面 O_3 的年变化曲线，其中日平均浓度的计算选择每日 ≥ 20 h 的有效记录，<20 h 的观测日被剔除。

由图 1 可见，龙凤山和临安地面 O_3 在观测期间浓度分布比较相似，有明显的季节变化和逐日变化；表 1 为 3 站地面 O_3 月平均浓度。最大日平均浓度龙凤山为 66×10^{-6}，而临安为 77×10^{-6}，观测期间地面 O_3 年平均，临安约 39.1×10^{-6}，龙凤山约 34.8×10^{-6}，瓦里关关，在整个观测期间浓度变化趋势比较稳定，最大日平均浓度为 79×10^{-6}，年平均地面 O_3 浓度为 49.3×10^{-6}，比临安和龙凤山高白 10×10^{-6} 以上，与欧洲高山站 Zugspitze（1983～1985）观测的年变化趋势较为一致。
表 1 1994年8月～1995年7月3站地面
 O₃月平均浓度（×10⁻⁶）
Table 1 Monthly average concentration of surface O₃ in three sites from Aug. 1994 to June. 1995（×10⁻⁶）

<table>
<thead>
<tr>
<th>月份</th>
<th>龙风山</th>
<th>林安</th>
<th>瓦里关山</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>37.30±5.75</td>
<td>41.99±5.49</td>
<td>54.76±5.83</td>
</tr>
<tr>
<td>9</td>
<td>33.86±6.88</td>
<td>49.96±8.40</td>
<td>42.38±4.92</td>
</tr>
<tr>
<td>10</td>
<td>41.72±4.43</td>
<td>56.88±7.56</td>
<td>42.45±4.96</td>
</tr>
<tr>
<td>11</td>
<td>43.94±9.98</td>
<td>44.23±16.3</td>
<td>41.43±2.61</td>
</tr>
<tr>
<td>12</td>
<td>28.00±2.97</td>
<td>27.97±8.36</td>
<td>38.74±2.73</td>
</tr>
<tr>
<td>1</td>
<td>27.32±3.32</td>
<td>35.19±9.35</td>
<td>43.53±2.95</td>
</tr>
<tr>
<td>2</td>
<td>32.21±2.71</td>
<td>47.47±9.52</td>
<td>45.04±2.50</td>
</tr>
<tr>
<td>3</td>
<td>33.60±3.73</td>
<td>41.74±9.21</td>
<td>49.09±3.09</td>
</tr>
<tr>
<td>4</td>
<td>37.39±6.81</td>
<td>33.01±6.55</td>
<td>52.39±4.57</td>
</tr>
<tr>
<td>5</td>
<td>41.05±7.13</td>
<td>41.62±9.13</td>
<td>55.27±4.96</td>
</tr>
<tr>
<td>6</td>
<td>34.34±8.33</td>
<td>28.33±11.6</td>
<td>65.29±4.19</td>
</tr>
<tr>
<td>7</td>
<td>27.19±7.35</td>
<td>21.51±6.87</td>
<td>61.69±10.6</td>
</tr>
<tr>
<td>平均</td>
<td>34.8</td>
<td>39.1</td>
<td>49.3</td>
</tr>
</tbody>
</table>

有研究表明[3]，当面地面
O₃超过30×10⁻⁶时，对农作物产
量有一定程度的影响。从上面
的分布可以看出，作为中国清
洁地区的代表，3站平均地面
O₃水平均比较高，临安在春、
秋季，O₃日平均浓度在40×
10⁻⁶以上；个别日子地面O₃
平均浓度达70×10⁻⁶以上，小
时平均超过100×10⁻⁶的也时
有发生；龙风山O₃浓度虽然
较低，但日平均也在30×10⁻⁶
以上，有时地面O₃小时平均
浓度也能超过一极甚至二级标
准(约70×10⁻⁶左右)；瓦里关
山常年内浓度偏高，最低日平均 O₃ 浓度在 30×10⁻³ 以上，夏季更高达 70×10⁻³～80×10⁻³，且持续时间长。

以上分布特征反映了冬季地面 O₃ 分布的大尺度特征以及夏秋季 O₃ 变化的多样性特点。冬季由于气温较低，辐射较弱，O₃ 化学生成率较低，同时 O₃ 和前体物 NOₓ 等在大气中的寿命变长，它们可以随大气运动在更大的水平和垂直范围内输送和稀释[1]，导致冬季 O₃ 浓度较低且分布上有一致性；随着太阳辐射的增强，O₃ 的化学生成率增大，同时 O₃ 和前体物在空气中的寿命变短，阻止了 O₃ 在大范围进一步扩散混合，地面 O₃ 的产生主要与当地天气条件和 O₃ 前体物的排放源强度以及边界层的湍流扩散运动有关。在有利的天气条件下，局地的光化学过程产生的 O₃ 可达到相当高的水平，表现了明显的区域性特征，这也是导致夏秋季节 O₃ 分布差异的主要原因。龙凤山位于黑龙江省南部偏北的农村，人口较少，当地经济以农、林业为主，测点周围为大片农田和林场，森林主要由落叶松和阔叶树种组成，测站盛行风为偏东风。其上游地区主要人为污染源距离较远，夏秋季前体物 NOₓ、NMHC 等主要来源为自然排放和当地生活排放，NMHC 浓度较高[6]，但 NOₓ 浓度较低；临安地处中国东部沿海经济发达地区的浙江省，测点位于临安县城以北 10 km，距杭州市西约 60 km，测点盛行东北风偏南风，当地乡镇企业发展迅速，污染物排放源较多，其东北 300 km 处是上海市，从东部人口密集、工业发达地区排放的污染物（包括一次和二次污染物），以及南部地区方向的污染物可随盛行风到达观测点，这可能是导致临安地面 O₃ 浓度比龙凤山高的重要因素；瓦里关站作为全球大陆本底站，位于青藏高原的瓦里关山，海拔 3800 m 左

图 2 龙凤山、临安和瓦里关山地面 O₃ 平均日变化

Fig. 2 Average diurnal variations of surface ozone in Longfengshan, Lin'an and Waliuguan

图 2 为 3 站地面 O₃ 的平均日变化。从图可见，地面 O₃ 平均日变化量临安最大，龙凤山次之，但两站日变化趋势相似，瓦里关山日变化量最小。
2.2 NO₃ 和 SO₄ 的变化

图3为NO₃和SO₄年变化曲线（处理同O₃），各月平均值见表2。

龙风山的NO₃和SO₄在夏季浓度较低，NO₃浓度不超过2×10⁻³，SO₄浓度低于1×10⁻³，10月份以后浓度明显增加，到12月浓度达到最大，NO₃月平均浓度最大为5.5×10⁻³，SO₄约2.1×10⁻³，其后浓度逐渐降低，到1995年5月份以后，NO₃浓度基本维持在1×10⁻³～2×10⁻³左右，而SO₄则基本维持在仪器检测限附近波动；较大浓度出现的时间与东北地区取暖季节开始一致。通过气象资料和源、汇的初步分析发现，在龙风山，全年偏南风占主导地位，吹SE～SW方向的风频约占60%以上，因此来自上风方向的污染源对龙风山的NO₃和SO₄将产生一定的影响，在SE～SW 象限内污染源主要来自长春、沈阳等城市。它们距离测点分别在200 km 和500 km 以外。在夏季，由于污染物本身寿命较短，再加上东北地区降水天气较多，雨水冲刷清除，由上风方向传来的NO₃和SO₄有限，可以认为，该地区夏季NO₃和SO₄的主要来源是自然排放和居民生活燃烧排放，浓度较低；但10月下旬以后，东北地区大范围的燃烧取暖以及在这一段期间内污染物的寿命相对较长，且降水较少，使污染物得以在大范围内输送，造成NO₃与SO₄浓度明显增高。年平均NO₃约为2.7×10⁻³，SO₄为0.7×10⁻³。与龙风山不同，临安各月平均SO₄均在10×10⁻³以上，年平均SO₄浓度为16.1×10⁻³，远高于龙风山。从季节变化看，临安从1994年12月～1995年3月NO₃与SO₄基本保持相对稳定，NO₃/SO₄比值变化较小（自1994年11月到1995年3月因仪器故障，剔除野点，NO₃资料较少，给出的图表可能与实际值有一定的偏差）。而在夏秋季（1994年8～11月以及1995年4～7月间），NO₃与SO₄则表现出不同的变化趋势，尤其在1995年5～7月，SO₄浓度明显偏高，而同期的NO₃浓度则较低，由于对NO₃、SO₄的源汇还缺少更多的了解，对此观测事实尚难给出较满意的解释。与1991年PEM-WEST-A¹相比，SO₄浓
度大幅度增加，最大增加幅度达 2～3 倍以上。而 NO$_2$ 的变化却并不明显，反映了当地乡镇工业和附近城市排放的污染物随盛行风输送过程对临安 SO$_2$ 浓度的贡献更大。瓦里关山的 NO$_2$ 和 SO$_2$ 浓度很低，季节变化不明显，但逐日平均浓度有明显的波动，NO$_2$ 年平均浓度约为 0.04×10^{-6}，较临安、龙凤山低 2 个量级以上，SO$_2$ 约为 0.15×10^{-6}，比龙凤山低一个量级，比临安低约 2 个量级，是典型的清洁大气本底浓度。

![图示](image)

图 3 龙凤山、临安和瓦里关山地面 NO$_2$（实线）和 SO$_2$（虚线）年变化

2.3 地面 O$_3$ 和 NO$_2$、NO$_x$ 和 SO$_2$ 变化的相互关系

近地面 O$_3$ 浓度明显的季节变化和逐日变化原因是多方面的，对流层 O$_3$ 的来源主要是平流层注入和对流层内的光化学反应，因此 O$_3$ 的变化，尤其是长期变化一方面受平流层 O$_3$ 的影响，另一方面受对流层内 O$_3$ 及其前体物的源、汇变化所制约。光化学反应过程的 O$_3$ 产生取决于大气中氮氧化物、碳氢化合物和一氧化碳及太阳紫外辐射的强度。图 4 和图 5 为 3 站地面 O$_3$、NO$_2$ 年变化曲线。

从 NO$_2$ 和 O$_3$ 年变化看（图 4），地面 O$_3$ 与其主要前体物 NO$_x$ 直接关系较复杂。在临安，夏季（1994 年 8 月，1995 年 6～7 月）地面 NO$_x$ 与 O$_3$ 日平均浓度表现出一定的正相关，这反映了局地光化学过程对 O$_3$ 的重要作用，但 O$_3$ 的逐日变化表现出几天到十几天的波动，又与一定的天气活动有关，由于 O$_3$ 的寿命较 NO$_2$ 长（夏季一般 O$_3$ 寿命约 5 天，NO$_x$ 约 1 天左右），输送过程也会对 O$_3$ 和 NO$_x$ 的逐日变化产生不同的影响；冬季，NO$_x$
和 O_3 的大气寿命远长于夏季，影响 NO_2 和 O_3 逐日变化的因素除天气活动外，还受大范围源、汇分布、长距离输送和局地光化学过程影响，NO_2 与 O_3 的关系较为复杂。以上规律在龙凤山并不明显，这是由于龙凤山 NO_2 浓度较低且变化不大，局地光化学过程受其它前体物（NMHC，CO 等）以及气象因素影响较大。瓦口关山因 NO_2 太低，局地光化学作用对地面 O_3 的贡献很小，其 O_3 分布主要反映了大尺度源、汇对 O_3 分布的贡献。

图 4 龙凤山、临安和瓦口关山地面 O_3 和 NO_2 年变化
Fig. 4 Yearly variations of surface O_3 and NO_2 in Longfengshan, Lin'an and Wailiguang

图 5 (a) 龙凤山 (b) 临安地面 O_3、NO_2、SO_2 平均日变化
Fig. 5 Average diurnal variations of surface O_3, NO_2 and SO_2 in (a) Longfengshan and (b) Lin'an
图 5a 和 5b 是临安和龙风山地面 O₃、NOₓ、SO₂ 平均日变化曲线，反映了随太阳辐射的变化光化学作用对地面 O₃ 生成的贡献。龙风山 NOₓ 在日出前浓度变化不大，7 时以后浓度增加，到 10 时浓度达到极大，其后浓度逐渐减小，午后 14～17 时，浓度达到最小；与 NOₓ 减少相对应，O₃ 在 14～17 时浓度达到日最大，这与光化学反应消耗 NOₓ 生成 O₃ 一致；临安的日变化与此类似。临安和龙风山缺少 NOₓ，日变化观测，但由于浓度很低，光化学作用对 O₃ 日变化的贡献较小，模式计算发现，以在临安实际观测 O₃ 前体物浓度作为模式初始条件，光化学反应 O₃ 起损耗作用，但减少量很小，平均损耗速率约 0.5×10⁻⁹/d，还不足以解释观测到的 2×10⁻⁹～3×10⁻⁹ 的日变化量。龙风山的观测资料表明，在大风天气，白天空气沿山坡向上运动，有可能把低层具有较低 O₃ 浓度的空气带到高处，使高层的 O₃ 浓度降低，对这种日变化特点的深入了解还有待于进一步研究。

地面平均 NOₓ 和 SO₂ 的相互关系可以从图 3 看出，在临安和龙风山，NOₓ 和 SO₂ 的时间变化趋势呈现较好的正相关性。数据分析表明，两者相关系数达 0.8、0.9 以上。这两者相互影响较小，而在临安，两者相关性较弱。原因可能在于 1995 年 6～7 月 NOₓ 浓度很低，而 SO₂ 浓度反而较大，说明 NOₓ 和 SO₂ 的源和变化更为复杂。

3 结 论

（1）临安、龙风山、瓦里关 3 站的地面 O₃ 浓度分布说明，在大多数清洁地区地面 O₃ 浓度达到较高水平，尤其在连续晴天的情况下，局地光化学过程可造成地面 O₃ 浓度达到相当高的程度。在地域分布上，城市附近农村 O₃ 浓度较大，远离城市地区浓度较小；海拔高度高的地区浓度较大。

（2）3 站地面 O₃ 的时间变化趋势分析发现，3 站 O₃ 表现出大范围较为一致的分布特点。而夏季，局地源、汇的影响更为重要。本次观测，龙风山、临安 10 月底至 11 月初浓度最大，12 月份和 6～7 月份最小，而瓦里关站 6～7 月浓度较大，12 月最小。反映了地面 O₃ 季节性分布的局地性与全球性特征。

（3）3 站地面 O₃ 的日变化规律显示了 O₃ 生成机制的不同。在大风天气，由于 O₃ 前体物浓度较高，光化学过程起主要作用。地面 O₃ 浓度在日出前最大，午后最小；瓦里关站则午前浓度较小，夜间浓度较大，日变化幅度临安最大，瓦里关站最小。

（4）NOₓ、SO₂ 的分布有明显的地理特征。临安浓度较高，龙风山其次，瓦里关站最小；局地源是造成这种差异的主要原因。

致谢：龙风山、临安和瓦里关山 3 站的同志为数据的可靠获取付出了辛勤的劳动，深表谢意。

参考文献

2. 王春乙，关福来。O₃ 浓度变化对我国主要农作物产量的可能影响。应用气象学报，1995, 6(1): 69～74.
OBSERVATIONAL ANALYSIS OF SURFACE O$_3$, NO$_x$, AND SO$_2$ IN CHINA

Yan Peng Li Xingsheng Luo Chao Xu Xiaobin Xiang Rongbiao
Ding Guo'an Tang Jie Wang Mulin Yu Xiaolan

(Chinese Academy of Meteorological Sciences, Beijing 100081)

Abstract

From August 1994 to August 1995, the continuous in-site measurements of surface O$_3$, NO$_x$, and SO$_2$ have been made in three sites of China which are Lin’an, Longfengshan background stations, and Waliguan baseline observatory. The preliminary analysis of the data indicates that the average concentration, monthly and diurnal change of surface O$_3$ mainly depend on geographic environment, sea level and weather conditions. During the periods of measurement, the average concentrations of surface O$_3$ are 34.8×10^{-3} in Longfengshan, 39.1×10^{-3} in Lin’an and 49.3×10^{-3} in Waliguan, respectively. The monthly average concentrations of surface O$_3$ are quite different in these sites, in Lin’an and Longfengshan, O$_3$ concentrations show lower in December and January, and in June and July, respectively, and higher from the end of October to early November, while in Waliguan, the monthly variation of O$_3$ concentration is much smaller, the lowest value in December, and the highest in June. The diurnal variation of surface O$_3$ concentration shows an obvious diurnal cycle with a maximum in the afternoon and a minimum in the early morning in Longfengshan and Lin’an, but with a small diurnal variation in Waliguan. The distributions of NO$_x$ and SO$_2$ show an obvious local characteristics, the average concentrations are 2.7×10^{-5} (NO$_x$) and 0.7×10^{-5} (SO$_2$), 8.1×10^{-5} (NO$_x$) and 16.1×10^{-5} (SO$_2$), 0.04×10^{-5} (NO$_x$) and 0.15×10^{-5} (SO$_2$), respectively in Longfengshan, Lin’an and Waliguan stations.

Key words: Background value; Surface Ozone, nitrogen-dioxide and sulfur-dioxide; Concentration.