[1] Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res, 2003, 108(D21), 8809, doi: 10.1029/2002JD003093.
[2] Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black carbon and organic carbon emissions from combustion. J Geophys Res, 2004, 109(D14203), doi: 10.1029/2003JD003697.
[3] Kondo Y, Komazaki Y, Miyazaki Y, et al. Temporal variations of elemental carbon in Tokyo. J Geophys Res, 2006, 111(12205), doi: 10.1029/2005JD006257.
[4] Park K, Kittelson D B, McMurry P H. Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci Technol, 2004, 38: 881-889. doi:  10.1080/027868290505189
[5] Park K, Kittelson D B, Zachariah M R, et al. Measurement of inherent material density of nanoparticle agglomerates. Nanoparticle Res, 2004, 6:267-272. doi:  10.1023/B:NANO.0000034657.71309.e6
[6] Haywood J M, Roberts D L, Slingo A, et al. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J Clim, 1997, 10: 1562-1577. doi:  10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2
[7] Myhre G, Stordal F, Restad K, et al. Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus, 1998, 50: 463-477. doi:  10.3402/tellusb.v50i5.16230
[8] Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci, 2004, 101:423-428. doi:  10.1073/pnas.2237157100
[9] Schnaiter M, Linke C, Mohler O, et al. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res, 2005, 110(D19204), doi: 10.1029/2005JD006046.
[10] Mikhailov E F, Vlasenko S S, Podgorny I A, et al. Optical properties of soot-water drop agglomerates: An experimental study. J Geophys Res, 2006, 111(D07209), doi: 10.1029/2005JD006389.
[11] Fuller K A, Malm W C, Kreidenweis S M. Effects of mixing on extinction by carbonaceous particles. J Geophys Res, 1999, 104(D13):15941-15954. doi:  10.1029/1998JD100069
[12] Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 2005, 409:695-697. http://europepmc.org/abstract/med/11217854
[13] Robinson L M, Roberts D L. An interactive simulation of the direct radiative effect of black carbon aerosol in a climate model. J Aerosol Sci, 1998, 29 (Supp Ⅰ): 1201-1202. http://www.sciencedirect.com/science/article/pii/S0021850298907832
[14] 田华, 马建中, 李维亮.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报, 2005, 16(3):322-333. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050341&flag=1
[15] IPCC. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 153-171.
[16] Weber R W. Short-term temporal variation in PM2.5mass and chemical composition during the Atlanta supersite experiment. J Air Waste Manag Assoc, 1999, 52: 1993-2003. https://www.ncbi.nlm.nih.gov/pubmed/12568257
[17] Streets D G, Gupta S, Waldhoff S D, et al. Black carbon emissions in China. Atmos Environ, 2001, 35: 4281-4296. doi:  10.1016/S1352-2310(01)00179-0
[18] 吴涧, 符淙斌.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究.大气科学, 2005, 29(1):111-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200501012.htm
[19] 曹国良, 张小曳, 王亚强, 等.中国大陆黑碳气溶胶排放清单.气候变化研究进展, 2006, 2(6):259-264. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200606001.htm
[20] 汤洁, 温玉璞, 周凌晞.中国西部大气清洁地区黑碳气溶胶的观测研究.应用气象学报, 1999, 10(5):160-170. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990255&flag=1
[21] 许黎, 王亚强, 陈振林, 等.黑碳气溶胶研究进展Ⅰ:排放、清除和浓度.地球科学进展, 2006, 21(4):352-360. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200604003.htm
[22] 孟昭阳, 张怀德, 蒋晓明, 等.太原冬季PM2.5中有机碳和元素碳的变化特征.应用气象学报, 2007, 18(4):524-531. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070482&flag=1
[23] 颜鹏, 李维亮, 秦瑜.近年来大气气溶胶模式研究综述.应用气象学报, 2004, 15(5):629-640. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040576&flag=1
[24] Stephens M, Turner N, Sandberg J. Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl Opt, 2003, 42(19): 3726-3736. doi:  10.1364/AO.42.003726
[25] Baumgardner D, Kok G, Raga G. Warming of arctic lower stratosphere by light absorbing particles. Geophys Res Lett, 2004, 31(L06117), doi: 10.1029/2003GL018883.
[26] Schwarz J P, Gao R S, Fahey D W, et al. Single-particle measurement of mid latitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J Geophys Res, 2006, 111(D16207), doi: 10.1029/2006JD007076.
[27] Slowik J G, Cross E, Han J, et al. An intercomparison of instruments measuring black carbon content and optical properties of soot particles. Aerosol Sci Technol, 2007, 44(3): 295-314. http://www.ingentaconnect.com/content/tandf/uast/2007/00000041/00000003/art00007
[28] Gao R S, Schwarz J P, Kelly K K, et al. A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci Technol, 2007, 41(2): 125-135. doi:  10.1080/02786820601118398
[29] Nobuhiro M, Yutaka K. Effects of mixing state on black carbon measurements by laser-induced incandescence. Aerosol Sci Technol, 2007, 41(3):398-417. doi:  10.1080/02786820701199728
[30] McMeeking G R, Hamburger T. Black carbon measurements in the boundary layer over western and northern Europe. Atmos Chem Phys, 2010, 10: 9393-9414. doi:  10.5194/acp-10-9393-2010
[31] 丁国安, 郑向东, 马建中, 等.近30年大气化学和大气环境研究回顾.应用气象学报, 2006, 17(6):796-814. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606128&flag=1
[32] Zhang X Y, Wang Y Q, Zhang X C, et al. Carbonaceous aerosol composition over various regions of China during 2006. J Geophys Res, 2008, 113(D14111), doi: 10.1029/2007JD009525.
[33] 中华人民共和国环境保护部. 重点城市空气质量日报. [2010-10-21] http://datacenter.mep.gov.cn/report/air_daily/air_dairy.jsp?city=天津&startdate=2009-12-01&enddate=2009-12-31&lang=&page=1.