[1] Zhou H, Diendorfer G, Thottappillil R, et al.Measured current and close electric field changes associated with the initiation of upward lightning from a tall tower.J Geophys Res Atmos, 2012, 117(D8):102-105.
[2] Zhou H, Diendorfer G, Thottappillil R, et al.Characteristics of upward positive lightning flashes initiated from the Gaisberg Tower.J Geophys Res Atmos, 2012, 117(D6):110-123.
[3] Warner T A.Observations of simultaneous upward lightning leaders from multiple tall structures.Atmos Res, 2012, 117(11):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4855e3738c98683a8ff69d8be55e54de
[4] Takagi N, Wang D, Watanabe T A.Study of upward positive leaders based on simultaneous observation of E-fields and high-speed images.IEEE Transactions on Fundamentals & Materials, 2006, 126(126):256-259.
[5] 武斌, 吕伟涛, 齐奇, 等.次正地闪触发两个并发上行闪电的光电观测, 应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
[6] Wu B, Lv W, Qi Q, et al.High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash.Geophys Res Lett, 2019, 46:14-27.
[7] Wu B, Lyu W, Qi Q, et al.Synchronized two-station optical and electric field observations of multiple upward lightning flashes triggered by a 310-kA+CG flash.J Geophys Res Atmos, 2019, 124:1050-1063. doi:  10.1029/2018JD029378
[8] Qi Q, Lyu W, Wu B, et al.Three-dimensional optical observations of an upward lightning triggered by positive cloud-to-ground lightning.Atmos Res, 2018, 214:275-283. doi:  10.1016/j.atmosres.2018.08.003
[9] Wang Z, Qie X, Jiang R, et al.High-speed video observation of stepwise propagation of a natural upward positive leader.J Geophys Res Atmos, 2016, 121(24):14307-14315. doi:  10.1002/2016JD025605
[10] Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions.J Geophys Res Atmos, 2017, 122(22):93-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2017JD027198
[11] Tan Y, Tao S, Liang Z, et al.Numerical study on relationship between lightning types and distribution of space charge and electric potential.J Geophys Res Atmos, 2014, 119(2):1003-1014. doi:  10.1002/2013JD019983
[12] 刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. doi:  10.11898/1001-7313.20160102
[13] 周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. doi:  10.11898/1001-7313.20160205
[14] 廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
[15] 张义军, 张阳.雷暴闪电放电活动对电离层影响的研究进展.应用气象学报, 2016, 27(5):570-576. doi:  10.11898/1001-7313.20160506
[16] 谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. doi:  10.11898/1001-7313.20170210
[17] 张义军, 孟青, 吕伟涛, 等.两次超级单体雷暴的电荷结构及其地闪特征.科学通报, 2005, 50(23):2663-2675. http://d.old.wanfangdata.com.cn/Periodical/kxtb200523017
[18] Krehbiel P R, Riousset J A, Pasko V P, et al.Upward electrical discharges from thunderstorm.Nat Geosci, 2008, 1:233-237. doi:  10.1038/ngeo162
[19] Zheng D, Zhang Y, Meng Q, et al.Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h.Atmos Res, 2010, 97(1/2):241-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a76ecb103e5beee8fab96e3214815
[20] 谭涌波, 陈超, 周洁晨, 等.积云模式中上行地闪的参数化方案及起始有利云内环境特征的探讨.中国科学(D辑), 2016, 46(7):986-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201607010
[21] 谭涌波, 梁忠武, 师正, 等.雷暴云底部正电荷区对闪电类型影响的数值模拟.中国科学(D辑), 2014, 44(12):2743-2752. http://d.old.wanfangdata.com.cn/Conference/8187034
[22] Carey L D, Murphy M J, McCormick T L, et al.Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system.J Geophys Res, 2005, 110(D3):105-128. doi:  10.1029-2003JD004371/
[23] Liu D, Qie X, Pan L, et al.Some characteristics of lightning activity and radiation source distribution in a squall line over north China.Atmos Res, 2013, 118(10):423-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21067f4e255936c421df187eb742884f
[24] Jiang R, Sun Z, Wu Z.Concurrent upward lightning flashes from two towers.Atmos Oceanic Sci Lett, 2014, 7(3):260-264. doi:  10.1080/16742834.2014.11447171
[25] 郭秀峰, 张其林, 张金波, 等.具有不对称结构的电晕放电模型建立及应用.科学技术与工程, 2018, 18(8):13-20. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201808003
[26] 谭涌波, 周博文, 郭秀峰, 等.建筑物高度对上行闪电触发以及传播影响的数值模拟.气象学报, 2015, 73(3):546-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201503011
[27] Tan Y, Guo X, Zhu J, et al.Influence on simulation accuracy of atmospheric electric field around a building by space resolution.Atmos Res, 2014, 138(138):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e155d00258b987fa12eb58735c8e4ca3
[28] Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35(2):196-199.
[29] Warner T A, Lang T J, Lyons W A.Syonptic scale outbreak of self-initiated upward lightning(SIUL) from tall structures during the central US blizzard of 1-2 February 2011.J Geophys Res, 2014, 119:9530-9548.
[30] Brook M, Nakano M, Krehbiel P, et al.The electrical structure of the hokuriku winter thunderstorms.J Geophys Res Oceans, 1982, 87(C2):1207-1215. doi:  10.1029/JC087iC02p01207
[31] Hager W W, Aslan B C, Sonnenfeld R G, et al.Three-dimensional charge structure of a mountain thunderstorm.J Geophys Res, 2010, 115(D12):119-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c15b67458a9e1ab310e2a110a80db99c
[32] Jiang R, Qie X, Wu Z, et al.Characteristics of upward lightning from a 325-m-tall meteorology tower.Atmos Res, 2014, 149:111-119. doi:  10.1016/j.atmosres.2014.06.007
[33] Ishii M, Saito M, Miki T, et al.Observation of Downward and Upward Lightning Flashes at 634-m Tower//XV International Conference on Atmospheric Electricity, 2014: 15-20.
[34] Tan Y, Zheng T, Shi Z, et al.Improved lightning model:Application to discuss the characteristics of upward lightning.Atmos Res, 2019, 217:63-72. doi:  10.1016/j.atmosres.2018.10.011
[35] 林辉, 谭涌波, 马宇翔, 等.雷暴云内电荷水平分布形式对闪电放电的影响.应用气象学报, 2018, 29(3):374-384. doi:  10.11898/1001-7313.20180311
[36] 于梦颖, 谭涌波, 师正, 等.通道感应电荷对放电活动特征的影响.应用气象学报, 2019, 30(1):105-116. doi:  10.11898/1001-7313.20190110
[37] 张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. http://qikan.camscma.cn/jamsweb/article/id/20140501
[38] 郭凤霞, 王曼霏, 黄兆楚, 等.青藏高原雷暴电荷结构特征及成因的数值模拟研究.高原气象, 2018, 37(4):911-922. http://d.old.wanfangdata.com.cn/Periodical/gyqx201804004
[39] 张廷龙, 郄秀书, 袁铁等.中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演.大气科学, 2008, 32(5):1221-1228. http://d.old.wanfangdata.com.cn/Periodical/daqikx200805019
[40] Mansell E R.Simulated three-dimensional branched lightning in a numerical thunderstorm model.J Geophys Res, 2002, 107(D9):4075-4088.
[41] Stolzenburg M, Rust W D, Marshall T C.Electrical structure in thunderstorm convective regions:2.Isolated storms.J Geophys Res, 1998, 103(D12):14079-14096. doi:  10.1029/97JD03547
[42] 谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分支结构的数值模拟.中国科学(D辑), 2006, 36(3):486-496.