留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达资料在孤立单体雷电预警中的初步应用

王飞 张义军 赵均壮 吕伟涛 孟青

王飞, 张义军, 赵均壮, 等. 雷达资料在孤立单体雷电预警中的初步应用. 应用气象学报, 2008, 19(2): 153-160..
引用本文: 王飞, 张义军, 赵均壮, 等. 雷达资料在孤立单体雷电预警中的初步应用. 应用气象学报, 2008, 19(2): 153-160.
Wang Fei, Zhang Yijun, Zhao Junzhuang, et al. The prelimiary application of radar data to the lightning warning of isolated storm cells. J Appl Meteor Sci, 2008, 19(2): 153-160.
Citation: Wang Fei, Zhang Yijun, Zhao Junzhuang, et al. The prelimiary application of radar data to the lightning warning of isolated storm cells. J Appl Meteor Sci, 2008, 19(2): 153-160.

雷达资料在孤立单体雷电预警中的初步应用

资助项目: 

中国气象科学研究院院长基金以及中国气象局武汉暴雨研究所暴雨研究开放基金项目 IHR2005K03

国家自然科学基金项目 40475002

The Prelimiary Application of Radar Data to the Lightning Warning of Isolated Storm Cells

  • 摘要: 利用多普勒雷达资料, 结合探空、闪电资料对2005年夏季北京地区的20个单体过程进行综合分析, 结果表明:40 dBz是比较适合该地区雷电预警的一个雷达回波特征参量; 在此基础之上, 将0 ℃层结高度作为基础特征高度, 并结合-10 ℃层结高度和强回波所占比例对孤立单体的雷电发生进行综合预警是一种较为接近实际应用的方法。根据以上分析, 该文针对孤立单体能否发生闪电、以及闪电发生的起始时间给出了一个初步的预报方法, 并利用22个孤立单体进行了检验。检验结果证明:该方法在对单体是否会发展为雷暴单体, 以及雷暴单体中初次闪电发生时段的预报方面效果较好。同时还发现, 雷暴单体中从25 dBz回波出现到单体的35 dBz回波厚度变化率达到极值的时间差, 与雷暴中最早的云闪与最早的地闪之间的时间差, 两者存在一定的线性关系。这为进一步预测地闪的发生提供了一个参考依据。
  • 图  1  各单体30, 35, 40 dBz回波顶高突破0 ℃层结高度百分比对照图

    Fig. 1  The percentage contrast of cells classified by various echo top (30 dBz, 35 dBz, 40 dBz) reached the 0 ℃ stratification level

    图  2  各单体30, 35, 40 dBz回波顶高突破-10 ℃层结高度百分比对照图

    Fig. 2  The percentage of cells classified by various echo top (30 dBz, 35 dBz, 40 dBz) reached the -10 ℃ stratification level

    图  3  一次孤立雷暴单体40 dBz回波顶高演变

    Fig. 3  The variability of 40 dBz echo top of an isolated thunderstorm

    图  4  一次孤立雷暴单体P值 (a) 及其40 dBz回波顶高 (b) 的演变

    Fig. 4  The variation of P value (a) and 40 dBz echo top (b) of an isolated thunderstorm

    图  5  一次孤立雷暴单体40 dBz回波顶高 (a) 及其P值 (b) 演变

    Fig. 5  The variability of 40 dBz echo top (a) and the P value (b) of an isolated thunderstorm

    图  6  TT′的线性关系

    (T:单体中从出现25 dBz回波到35 dBz回波最大厚度变化率达到极大值的时间差; T′:单体中初次云闪与初次地闪之间的时间差)

    Fig. 6  The linear relationship between T and T

    (T:the time difference from 25 dBz firstly appeared to the maximun V; T′:the time difference from the first cloud flash occurred to the first CG)

    表  1  20个单体在雷达及闪电发生方面的情况汇总

    Table  1  The lightning information of 20 cells

  • [1] Serge Soula, Serge Chauzy. Some aspects of the correlation between lightning and rain activities in thunderstorms. Atmospheric Research, 2001, 56:355-373. doi:  10.1016/S0169-8095(00)00086-7
    [2] Battan L J. Some factors governing precipitation and lightning from convective clouds. J Atmos Sci, 1965, 22:79-84. doi:  10.1175/1520-0469(1965)022<0079:SFGPAL>2.0.CO;2
    [3] Sheridan S C, Griffiths J H, Orville R E. Warm season cloudto-ground lightning precipitation relationships in the South-Central United States. Wea Forecasting, 1997, 12:449-458. doi:  10.1175/1520-0434(1997)012<0449:WSCTGL>2.0.CO;2
    [4] Piepgrass M V, Krider E P, Moore C B. Lightning and surface rainfall during Florida thunderstorms. J Geophys Res, 1982, 87 (13):11193-11201.
    [5] 陈哲漳.冰雹与雷暴大风的云对地闪电特征.气象学报, 1995, 53(3):367-374. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB503.012.htm
    [6] 张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605104&flag=1
    [7] Blyth A M, Christian H J, Driscoll K, et al. Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning. Atmos Res, 2001, 59-60: 217-229. doi:  10.1016/S0169-8095(01)00117-X
    [8] Baker M B, Christian H J, Latham J. A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q J R Meteorol Soc, 1995, 121:1525-1548. doi:  10.1002/(ISSN)1477-870X
    [9] Baker M B, Blyth A M, Chiristian H J, et al. Relationships between lightning activity and various thundercloud parameters: Satellite studies. Atmos Res, 1999, 51:221-236. doi:  10.1016/S0169-8095(99)00009-5
    [10] Petersen W A, Rutledge S A. Regional variability in tropical convection:Observations from TRMM. J Climate, 2001, 14: 3566-3586. doi:  10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2
    [11] Buechler D E, Wright P D, Goodman S J. Lightning-rainfall Relationships during COHMEX. Proc Conf on Atmospheric Electricity, Alta, Canada, AMS, 1990.
    [12] Wiebke Deierling, John Latham, Walter A Petersen, et al. On the relationship of the thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos Res, 2005, 76: 114-126. doi:  10.1016/j.atmosres.2004.11.023
    [13] Maribel Martinez. The Relationship Between Radar Reflectivity and Lightning Activity at Initial Stages of Convective Storms. American Meteorological Society, 82nd Annual Meeting, First Annual Student Conference, Orlando, Florida, 2002.
    [14] Brandon R Vincent, Lawrence D Carey, Douglas Schneider, et al. Using WSR-88D reflectivity for the prediction of cloud-toground lightning:A central north carolina study. National Weather Digest, 2003, 27:35-44. https://www.researchgate.net/publication/268295227_Using_WSR-88D_reflectivity_data_for_the_prediction_of_cloud-to-ground_lightning_a_North_Carolina_study
    [15] 孟青, 葛润生, 朱小燕.SAFIR闪电检测和预警系统.气象科技, 2002, 30(3):135-138. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200203001.htm
    [16] Takahashi T. Riming electrification as a charge generation mechanism in thunderstorms. J Atmos Sci, 1978, 35:1536-1548. https://www.researchgate.net/publication/234294413_Riming_Electrification_as_a_Charge_Generation_Mechanism_in_Thunderstorms
    [17] 谢屹然, 郄秀书, 郭凤霞, 等.液态水含量和冰晶浓度对闪电频数影响的数值研究.高原气象, 2005, 24(4):598-603. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200504019.htm
    [18] 言穆弘, 刘欣生, 安学敏, 等.雷暴非感应起电机制的模拟研究:Ⅰ.云内因子影响.高原气象, 1996, 15(4):425-437. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX604.004.htm
  • 加载中
图(6) / 表(1)
计量
  • 摘要浏览量:  4466
  • HTML全文浏览量:  721
  • PDF下载量:  1856
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-11-16
  • 修回日期:  2007-07-10
  • 刊出日期:  2008-04-30

目录

    /

    返回文章
    返回