留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种反演气溶胶光学厚度的改进方法

何涛 赵凤生

何涛, 赵凤生. 一种反演气溶胶光学厚度的改进方法. 应用气象学报, 2011, 22(6): 663-672..
引用本文: 何涛, 赵凤生. 一种反演气溶胶光学厚度的改进方法. 应用气象学报, 2011, 22(6): 663-672.
He Tao, Zhao Fengsheng. An improved retrieval algorithm of aerosol optical depth. J Appl Meteor Sci, 2011, 22(6): 663-672.
Citation: He Tao, Zhao Fengsheng. An improved retrieval algorithm of aerosol optical depth. J Appl Meteor Sci, 2011, 22(6): 663-672.

一种反演气溶胶光学厚度的改进方法

资助项目: 

国家自然科学基金重点项目 40637035

详细信息
    通信作者:

    赵凤生, E-mail: fszhao@nsmc.cma.gov.cn

An Improved Retrieval Algorithm of Aerosol Optical Depth

  • 摘要: 该文提出了一种简单快速反演气溶胶光学厚度的方法,该算法对地表反照率的处理与MODIS V5.2算法相同,但气溶胶谱分布假定为Junge谱,设置了新的气溶胶参数。应用2006年9月6日—2008年6月10日太湖MODIS观测资料和2008年5月20日—2009年7月6日香河MODIS观测资料进行反演,并将反演结果与AERONET (AErosol RObotic NETwork) 站点资料进行对比,以检验算法的适用性和精度。对比结果显示:该算法在太湖的反演结果与AERONET太湖站反演结果对比的标准偏差为0.429,而MODIS卫星AOD产品与AERONET太湖站反演结果对比的标准偏差为0.693;相应在香河的两种反演结果与地面观测对比的标准偏差分别为0.493和0.542。该算法的反演误差小于MODIS现行算法,反演结果合理,具有较好的适用性,说明这种方法在这两个区域具有更高的反演精度。
  • 图  1  不同季节1°×1°格点的MODIS全球陆地球形粒子气溶胶模型

    (红色和绿色区域代表吸收型和非吸收型气溶胶,其余地方为中等吸收型气溶胶)

    Fig. 1  Spherical aerosol model type designated at 1° ×1° gridbox of each season

    (red and green areas represent absorbing and non-absorbing models, respectively; neutral is assumed everywhere else)

    图  2  陆地气溶胶反演算法流程图

    Fig. 2  Flowchart illustrating the derivation of aerosol over land

    图  3  2006年9月6日—2008年6月10日

    (a) 本算法反演结果与地面资料的对比,(b) 对应的MODIS产品与地面资料的对比

    Fig. 3  The comparisons between AOD derived by the improved algorithm and MODIS products with measurements at Taihu from 6 September 2006 to 10 June 2008

    (a) AOD derived by the improved algorithm and measurements at Taihu, (b) MODIS products and measurements at Taihu

    图  4  2008年5月20日—2009年7月6日气溶胶光学厚度反演结果、MODIS产品与香河站观测值的对比图

    (a) 本算法反演结果与地面资料的对比,(b) 对应的MODIS产品与地面资料的对比

    Fig. 4  The comparisons between AOD derived by the improved algorithm and MODIS products with measurements at Xianghe from 20 May 2008 to 6 July 2009

    (a) AOD derived by the improved algorithm and measurements at Xianghe, (b) MODIS products and measurements at Xianghe

    图  5  2009年5月20日02:50气溶胶反演结果与卫星产品的对比图

    (a) 本算法利用Terra卫星2009年5月20日02:50的MODIS数据反演的550 nm通道的气溶胶光学厚度,(b) 同时刻卫星产品

    Fig. 5  The comparisons between AOD derived by the improved algorithm and MODIS products

    (a) AOD at 550 nm channel derived by the improved algorithm in terms of MODIS data at 02:50 20 May 2009, (b) the satellite products at the same time

    图  6  在550 nm处散射角为120°时不同气溶胶光学厚度下大气和地表分别对表观反射率的贡献以及地表对表观反射率的贡献率

    Fig. 6  The contribution of atmospheric and surface to the apparent reflectance and the contribution rate of surface to the apparent reflectance in different aerosol optical depth when the wavelength is 550 nm and the scattering angle is 120°

    表  1  利用6S辐射传输模式建立查找表时参数的设置

    Table  1  The setting of parameters about the looking-up table using 6S radiative transfer model

    变量名 个数 取值范围
    通道 4 MODIS 1,3,4,7通道,中心波长分别为
    0.646 μm,0.466 μm,0.553 μm,2.119 μm
    太阳天顶角/(°) 9 0, 6, 12, 24, 36, 48, 54, 60, 66
    观测天顶角/(°) 16 0, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 52, 56, 60, 66
    相对方位角/(°) 16 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180
    光学厚度 5 0.01, 0.25, 0.5, 1.0, 2.0
    地表反射率 3 0.0, 0.1, 0.25
    气溶胶粒子半径/μm 0.01~15.0
    下载: 导出CSV

    表  2  AERONET部分站点的Angstrom440_675指数的统计平均

    Table  2  The statistical average of Angstrom440_675 at part of AERONET sites

    站点 时间段 平均值
    香河 2001-03-20—2009-07-07 1.127
    兴隆 2006-02-19—2008-05-22 1.157
    太湖 2005-09-01—2008-10-02 1.196
    合肥 2005-11-17—2008-11-20 1.470
    杭州 2007-08-08—2007-11-14 1.291
    下载: 导出CSV

    表  3  利用AERONET数据对各通道单次散射反照率平均值的统计表

    Table  3  The average statistical of single scattering albedo using AERONET data of different channels

    地点 AOD 单次散射比 时间段
    440 nm 675 nm 870 nm 1020 nm
    太湖 0.5 < τ < 1 0.887 0.908 0.905 0.902 2005-09-06—2009-12-05
    1 < τ < 1.5 0.903 0.920 0.916 0.915
    τ > 1.5 0.921 0.936 0.935 0.936
    香河 0.5 < τ < 1 0.881 0.908 0.905 0.901 2001-03-20—2009-07-02
    1 < τ < 1.5 0.899 0.925 0.923 0.919
    τ > 1.5 0.921 0.939 0.937 0.934
    兴隆 0.5 < τ < 1 0.917 0.936 0.931 0.926 2006-02-20—2008-05-21
    1 < τ < 1.5 0.922 0.936 0.933 0.932
    τ > 1.5 0.942 0.957 0.951 0.948
    下载: 导出CSV
  • [1] 胡荣明, 石广玉.中国地区气溶胶的辐射强迫及其气候响应试验.大气科学, 1998, 22: 919-925. http://cdmd.cnki.com.cn/Article/CDMD-85101-2004093204.htm
    [2] 赵凤生, 石广玉.气溶胶气候效应的一维模式分析.大气科学, 1994, 18: 902-909. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.013.htm
    [3] 吴涧, 蒋维楣, 刘红年, 等.硫酸盐气溶胶直接和间接辐射气候效应的模拟研究.环境科学学报, 2002, 22(2): 129-134. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX200202000.htm
    [4] Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India. Science, 2002, 297: 2250-2253. doi:  10.1126/science.1075159
    [5] Charlson R J, Schwartz S E, Hales J M, et al. Survey of radiometric calibration results and methods for visible and near infrared channels of NOAA-7, -9, and-11 AVHRRs. Remote Sens Environ, 1992, 41: 19-27. doi:  10.1016/0034-4257(92)90057-Q
    [6] Zhao F S, Nakajima T. The Effects of Anthropogenic Aerosols on Optical Thickness and Particle Size of Cloud. PartⅠ: Retrieved Algorithm. Asia-Pacific ISY Conference, 1992.
    [7] Zhao F S, Li Y, Dong C H, et al. An algorithm for determination of aerosol optical thickness from AVHRR imagery over oceans. Mereorol Atmos phys, 2002, 80: 73-88. doi:  10.1007/s007030200016
    [8] 李成才, 刘启汉, 毛节泰, 等.利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染.应用气象学报, 2004, 15(6): 641-650. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040695&flag=1
    [9] 毛节泰, 李成才, 张军华, 等. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比.应用气象学报, 2002, 13(增刊):127-135. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2002S1013.htm
    [10] Remer L A, Didier T, Kaufman Y J. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005.Revision 2, 2009. http://modis-atmos.gsfc.nqsa.gov/MOD04_L2/atbd.html.
    [11] Remer L A, Kaufman Y J, Didier T, et al. The MODIS aerosol algorithm, products, and validation. J Atmos sci, 2005, 62(4): 947-973. https://modis-atmos.gsfc.nasa.gov/_docs/Remer_et_al._(2004).pdf
    [12] KaufmanY J, Wald A E, Remer L A, et al. The MODIS 2.1 mm channel—Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 1286-1298. doi:  10.1109/36.628795
    [13] KaufmanY J, Gobron N, Pinty B, et al. Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm—Theory. Geophys Res Lett, 2002, 29(23), 2116, doi: 10.1029/2001GL014492.
    [14] Levy R C, Remer L A, Shana M, et al. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res, 2007, 112, D13211, doi: 10.1029/2006JD007811.
    [15] Levy R C, Remer L A, Oleg D. Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrival over land. J Geophys Res, 2007, 112, D13210, doi: 10.1029/2006JD007815.
    [16] Li Zhanqing, Niu Feng, Lee Kwo-Ho, et al. Validation and understanding of moderate resolution imaging spectroradiometer aerosol products (C5) using ground-based measurements from the handheld sun photometer network in China. J Geophys Res, 2007, 112, D22S07, doi: 10.1029/2007JD008479.
    [17] 李晓静, 张鹏, 张兴赢, 等.中国区域MODIS陆上气溶胶光学厚度产品检验.应用气象学报, 2009, 20(2):147-156. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090203&flag=1
    [18] Amit M, Jayaraman A, Ganguly D. Validation of MODIS derived aerosol optical depth over Western India. J Geophys Res, 2008, 113, D04203, doi: 10.1029/2007JD009075.
    [19] Judith J H, Karla M L, Rafael M F, et al. Regional representatively of AERONET observation sites during the biomass burning season in South America determined by correlation studies with MODIS aerosol optical depth. J Geophys Res, 2009, 114, D13301, doi:  10.1029/2008JD010369.
    [20] Zhao F S, Nakajima T. Simultaneous determination of water-leaving reflectance and aerosol optical thickness from coastal zone color scanner measurements. Applied Optics, 1997, 36(27): 6949-6956. doi:  10.1364/AO.36.006949
    [21] Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J Geophys Res, 2000, 105(D8): 9791-9806. doi:  10.1029/2000JD900040
  • 加载中
图(6) / 表(3)
计量
  • 摘要浏览量:  4116
  • HTML全文浏览量:  1033
  • PDF下载量:  2254
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-10
  • 修回日期:  2011-08-03
  • 刊出日期:  2011-12-31

目录

    /

    返回文章
    返回